Structure Characterization of Electrodeposited Zinc Selenide Thin Films

2011 ◽  
Vol 264-265 ◽  
pp. 732-737 ◽  
Author(s):  
S.A. Mohamad ◽  
Wan Jeffrey Basirun ◽  
Z.A. Ibrahim ◽  
A.K. Arof ◽  
Mehdi Ebadi

Crystalline thin of zinc selenide have been electrochemically deposited on conducting substrates of indium tin oxide, ITO glass. Initial investigation with voltammetry was done and shows that the zinc selenide films were stable towards oxidation. The best deposition potential obtained was at -0.95 V vs. Ag /AgCl while at lower deposition potentials, the films do not form well. Energy Dispersive Analysis and X-Ray spectrum indicate that the films deposited at 65oC and -0.95 V vs. Ag/AgCl have nearly stoichiometric Zn: Se ratio.

2013 ◽  
Vol 311 ◽  
pp. 430-434
Author(s):  
Kuo Chin Hsu ◽  
Jiunn Der Liao ◽  
Zheng Zhong Xie ◽  
Yaw Shyan Fu

The cubic and rod-shaped powders of indium tin oxide were synthesized at a stable temperature reaction for 18h using the surfactant aid hydrothermal method under various conditions. The cubic and rod-shaped powder size changes with the concentration of the precursor. The finished products of indium tin oxide can be obtained by calcination at 500°C for 2h in air. Characterization was conducted using scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffractometry (XRD), thermogravimetric analyzer/differential thermal analysis (TG/DTA) and the Brunauer-Emmett-Teller (BET). XRD analysis shows that the conditions of this experiment can produce pure ITO powders. The characterization of cubic and rod-shaped ITO powders is also discussed.


2013 ◽  
Vol 479-480 ◽  
pp. 64-68 ◽  
Author(s):  
Kuo Chin Hsu ◽  
Jiunn Der Liao ◽  
Zheng Zhong Xie ◽  
Yaw Shyan Fu

The cubic and rod-shaped powders of indium tin oxide were synthesized at a stable temperature reaction for 18h using the surfactant aid hydrothermal method under various conditions. The cubic and rod-shaped powder size changes with the concentration of the precursor. The finished products of indium tin oxide can be obtained by calcination at 500°C for 2h in air. Characterization was conducted using scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffractometry (XRD), thermogravimetric analyzer/differential thermal analysis (TG/DTA) and the Brunauer-Emmett-Teller (BET). XRD analysis shows that the conditions of this experiment can produce pure ITO powders. The characterization of cubic and rod-shaped ITO powders is also discussed.


2011 ◽  
Vol 413 ◽  
pp. 371-374
Author(s):  
Xiao Jiao Yu ◽  
A Man Zhang ◽  
Jian Zhang ◽  
Jie Zhao ◽  
Bing Hua Yao ◽  
...  

Cu2O thin films is preparated through electrodeposition with conductive glass of coating indium tin oxide as work electrode.The effects of various factor upon Cu2O film morphology are investigated.The best conditions of electrodeposition Cu2O film are discussed.The deposition potential is determined by Linear sweep voltammetry.The results indicate that when pH is 5.50~ 6.00, the concentrations of Cu (CH3COO)2 is 0.015 ~ 0.04 mol/L,and the deposition potential is-0.075 ~ 0.225 V (vs SCE),Cu2O thin films morphology is dendritic crystal.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 560
Author(s):  
Ravindra Ketan Mehta ◽  
Anupama Bhat Kaul

In this work, we implemented liquid exfoliation to inkjet-print two-dimensional (2D) black phosphorous (BP) and molybdenum disulfide (MoS2) p–n heterojunctions on a standard indium tin oxide (ITO) glass substrate in a vertical architecture. We also compared the optical and electrical properties of the inkjet-printed BP layer with that of the MoS2 and the electrical properties of the mechanically exfoliated MoS2 with that of the inkjet-printed MoS2. We found significant differences in the optical characteristics of the inkjet-printed BP and MoS2 layers attributed to the differences in their underlying crystal structure. The newly demonstrated liquid exfoliated and inkjet-printed BP–MoS2 2D p–n junction was also compared with previous reports where mechanically exfoliated BP–MoS2 2D p–n junction were used. The electronic transport properties of mechanically exfoliated MoS2 membranes are typically better compared to inkjet-printed structures but inkjet printing offers a cost-effective and quicker way to fabricate heterostructures easily. In the future, the performance of inkjet-printed structures can be further improved by employing suitable contact materials, amongst other factors such as modifying the solvent chemistries. The architecture reported in this work has potential applications towards building solar cells with solution processed 2D materials in the future.


Sign in / Sign up

Export Citation Format

Share Document