Microstructure and Tensile Properties of Ultrafine Grained Pure Al Sheets Produced by Accumulative Roll Bonding

2011 ◽  
Vol 284-286 ◽  
pp. 993-996
Author(s):  
Kun Xia Wei ◽  
Wei Wei ◽  
Qing Bo Du ◽  
Jing Hu

Usually the heat treatment in the cyclic ARB passes is indispensable to reduce work-hardening effects and improve interface bonding quality. The possibility of accelerating grain refinement of aluminum sheets with a dimension of 300 mm×50 mm×1 mm is investigated during the ARB process at room temperature, in which the samples are rotated by 180 degree around normal plane axis perpendicular to the rolling plane between the adjacent cycles. By means of optical microscopy and transmission electron microscopy, it shows that the bonding interfaces can not obviously observed after five cycles, and grains are refined to be ~0.5 μm. Tensile tests show the ARB samples exhibit strain hardening behavior after yielding without a sudden fracture even up to seven cycles of ARB. The softening behavior and enhanced ductility was explained by dynamic recovery, the recrystallization process and even abnormal large grains.

2010 ◽  
Vol 667-669 ◽  
pp. 863-866
Author(s):  
Xin Zhao ◽  
Xiao Ling Yang

Steel plates with lath martensite microstructure were rolled up to 68% reduction at 673 K and then annealed at 473-973 K. The microstructure evolution was studied by using an optical microscope and a transmission electron microscopy. And the properties were investigated by using tensile tests and hardness tests. Results show that ultrafine grains + nano-carbides are obtained in the steel plates. The specimen annealed at 823 K has a good combination of strength and ductility. The tensile strength and total elongation are 1028 MPa and 7.2%, respectively. And the hardness is 338 Hv.


2007 ◽  
Vol 539-543 ◽  
pp. 4315-4320 ◽  
Author(s):  
Ilana B. Timokhina ◽  
Elena V. Pereloma ◽  
Peter D. Hodgson

The effect of pre-straining (PS) and bake-hardening (BH) on the microstructure and mechanical properties has been studied in C-Mn-Si TRansformation Induced Plasticity (TRIP) steels after: (i) thermomechanically processing (TMP) and (ii) intercritical annealing. The steels were characterised before and after PS/BH by transmission electron microscopy (TEM), X-ray diffraction (XRD), and tensile tests. The main microstructural differences were the higher volume fraction of bainite and more stable retained austenite in the TMP steel. This led to a difference in the strain-hardening behavior before and after BH treatment. The higher dislocation density in ferrite and formation of microbands in the TMP steel after PS and the formation of Fe3C carbides between the bainitic ferrite laths during BH for both steels also affected the strain-hardening behavior. However, both steels after PS/BH treatment demonstrated an increase in the yield and tensile strength.


2011 ◽  
Vol 682 ◽  
pp. 205-209
Author(s):  
Xin Zhao ◽  
Xiao Ling Yang ◽  
Tian Fu Jing

Specimens of medium carbon steel were quenched and warm-compressed on a Gleeble 3500 Machine. The microstructure of the specimens was studied by using an optical microscope and a transmission electron microscopy. And the properties were investigated by using tensile tests and hardness tests. Results show that the starting microstructure is lath martensite with a small amount of flake martensite. After 50% compression at 550-650°C, ultrafine grains can be observed in the specimens. The microstructure of the specimens compressed at 600°C is equiaxed ultrafine ferrite grains + nano-carbides and a good combination of strength and ductility is obtained. The tensile strength and total elongation are 861MPa and 19.1%, respectively. The hardness is 233.81Hv.


2007 ◽  
Vol 551-552 ◽  
pp. 387-392 ◽  
Author(s):  
Wen Juan Zhao ◽  
Hua Ding ◽  
D. Song ◽  
F.R. Cao ◽  
Hong Liang Hou

In this study, superplastic tensile tests were carried out for Ti-6Al-4V alloy using different initial grain sizes (2.6 μm, 6.5μm and 16.2 μm) at a temperature of 920°C with an initial strain rate of 1×10-3 s-1. To get an insight into the effect of grain size on the superplastic deformation mechanisms, the microstructures of deformed alloy were investigated by using an optical microscope and transmission electron microscope (TEM). The results indicate that there is dramatic difference in the superplastic deformation mode of fine and coarse grained Ti-6Al-4V alloy. Meanwhile, grain growth induced by superplastic deformation has also been clearly observed during deformation process, and the grain growth model including the static and strain induced part during superplastic deformation was utilized to analyze the data of Ti-6Al-4V alloy.


2015 ◽  
Vol 60 (2) ◽  
pp. 605-614 ◽  
Author(s):  
T. Kvačkaj ◽  
A. Kováčová ◽  
J. Bidulská ◽  
R. Bidulský ◽  
R. Kočičko

AbstractIn this study, static, dynamic and tribological properties of ultrafine-grained (UFG) oxygen-free high thermal conductivity (OFHC) copper were investigated in detail. In order to evaluate the mechanical behaviour at different strain rates, OFHC copper was tested using two devices resulting in static and dynamic regimes. Moreover, the copper was subjected to two different processing methods, which made possible to study the influence of structure. The study of strain rate and microstructure was focused on progress in the mechanical properties after tensile tests. It was found that the strain rate is an important parameter affecting mechanical properties of copper. The ultimate tensile strength increased with the strain rate increasing and this effect was more visible at high strain rates$({\dot \varepsilon} \sim 10^2 \;{\rm{s}}^{ - 1} )$. However, the reduction of area had a different progress depending on microstructural features of materials (coarse-grained vs. ultrafine-grained structure) and introduced strain rate conditions during plastic deformation (static vs. dynamic regime). The wear behaviour of copper was investigated through pin-on-disk tests. The wear tracks examination showed that the delamination and the mild oxidational wears are the main wear mechanisms.


2008 ◽  
Vol 8 (2) ◽  
pp. 722-727 ◽  
Author(s):  
Tae-hyun Nam ◽  
Cheol-am Yu ◽  
Jung-min Nam ◽  
Hyun-gon Kim ◽  
Yeon-wook Kim

Microstructures and deformation behaviour of Ti-45Ni-5Cu and Ti-46Ni-5Cu alloy ribbons prepared by melt spinning were investigated by transmission electron microscopy, thermal cycling tests under constant load and tensile tests. Spherical Ti2Ni particles coherent with the B2 parent phase were observed in the alloy ribbons when the melt spinning temperature was higher than 1773 K. Average size of Ti2Ni particles in the ribbons obtained at 1873 K was 8 nm, which was smaller than that (10 nm) in the ribbons obtained at 1773 K. Volume fraction of Ti2Ni phase in the ribbons obtained at 1873 K was 40%, which was larger than that (20%) in the ribbons obtained at 1773 K. The stress required at temperatures of Af + 10 K for the stress-induced martensitic transformation increased from 93 MPa to 229 MPa and apparent elastic modulus of the B2 parent phase increased from 56 GPa to 250 GPa with increasing the melt spinning temperature from 1673 K to 1873 K in Ti-45Ni-5Cu alloy ribbons. The critical stress for slip deformation of the ribbons increased by coherent Ti2Ni particles, and thus residual elongation did not occur even at 160 MPa, while considerable plastic deformation occurred at 60 MPa in the ribbons without Ti2Ni particles. Almost perfect superelastic recovery was found in the ribbons with coherent Ti2Ni particles, while only partial superelastic recovery was observed in the ribbons without coherent Ti2Ni particles.


2002 ◽  
Vol 753 ◽  
Author(s):  
Masahiro Tsuji ◽  
Hideki Hosoda ◽  
Kenji Wakashima ◽  
Yoko Yamabe-Mitarai

ABSTRACTEffects of ruthenium (Ru) substitution on constituent phases, phase transformation temperatures and mechanical properties were investigated for Ti-Ni shape memory alloys. Ti50Ni50-XRuX alloys with Ru contents (X) from 0mol% (binary TiNi) to 50mol% (binary TiRu) were systematically prepared by Ar arc-melting followed by hot-forging at temperatures from 1173K to 1673K depending on chemical composition. Phase stability was assessed by DSC (differential scanning calorimetry), XRD (X-ray diffractometry) and TEM (transmission electron microscopy). Mechanical properties were investigated using hardness and tensile tests at room temperature. With increasing Ru content, it was found that the lattice parameter of B2 phase increases, the martensitic transformation temperature slightly decreases, and the melting temperature increases monotonously. Besides, R-phase appears for Ti-Ni alloys containing 3mol% and 20mol%Ru but no diffusionless phase transformation is seen in Ti-Ni alloy containing 5mol%Ru. Vickers hardness shows the maximum at an intermediate composition (HV1030 at 30mol%Ru); this suggests that large solid solution hardening is caused by Ru substitution for the Ni-sites in TiNi.


2007 ◽  
Vol 29-30 ◽  
pp. 245-248
Author(s):  
F. Tang ◽  
B.Q. Han ◽  
Masuo Hagiwara ◽  
Julie M. Schoenung

An ultrafine-grained Al-5083 alloy reinforced with 5 vol.% nano-sized β-SiC particles was fabricated with a powder cryomilling and consolidation technique. Tensile tests were conducted at temperatures from 298 to 773 K for this composite. The mechanisms for deformation and fracture of this nanostructured composite at various temperatures are discussed.


2014 ◽  
Vol 936 ◽  
pp. 1163-1167
Author(s):  
Wen Jun He ◽  
Guang Hui Min ◽  
Oleg Tolochko

Microstructure and mechanical properties of Ti51.5Ni25Cu23.5 ribbon fabricated by melt spinning were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and tensile tests. Some B19 martensite crystalline with (011) compound twin was embedded in the mainly amorphous ribbon, while the ribbon annealed at 450°C for 1 h is at fully martensitic state. Annealing process alter the preferential orientation from (022)-B19 to (111)-B19. Tensile fracture stresses of as-spun ribbon and the annealed ribbon are 1257 MPa and 250 MPa, respectively. The tensile fracture morphology of as-spun ribbon shows typical vein fringe while that of the annealed ribbon reveals fine but depth-inhomogeneous dimples. After tensile deformation, the annealed ribbon exhibits typical martensitic detwinning behavior accompanying with the strain contrast.


Sign in / Sign up

Export Citation Format

Share Document