Effect of Acid Modification on the Properties of Potato Starch Pastes and Starch Film

2011 ◽  
Vol 287-290 ◽  
pp. 2648-2651
Author(s):  
Wen Yu Wang ◽  
Xin Jin ◽  
Shuan Qing Hou ◽  
Yu Feng Zhang ◽  
Xiao Xu Sha

The effect of acid modification using 1mol/L HCl on viscosity, thermal properties and mechanical properties of potato starch pastes and starch film were investigated. After acid modification, the surface of starch granules did not show more roughness and viscosity of starch pastes become lower. The results of DSC indicated that acid should act on amorphous region of starch firstly and would act on the crystallization region with the longer treatment time. In the very close viscosity scope, the mechanical properties of starch films were increased obviously after acid modification.

Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1172 ◽  
Author(s):  
Rongfei Zhang ◽  
Xiangyou Wang ◽  
Meng Cheng

The various sizes (15, 30, 80, and 100 nm) of nano-SiO2/potato starch films were synthesized and characterized. The gas permeability, antibacterial properties, and mechanical properties of the films were evaluated to their potential for application as food packaging materials. Results indicated that the 100 nm nano-SiO2 was well dispersed in the starch matrix, which induced an active group on the surface of 100 nm nano-SiO2 adequately combined with starch macromolecule. The water resistance and mechanical properties of the films were improved with the addition of nano-SiO2. Notably, resistance to ultraviolet and thermal aging was also enhanced. The nano-SiO2/potato starch films were more efficient against Escherichia coli (E. coli) than Staphylococcus aureus (S. aureus). Remarkable preservation properties of the films packaging the white mushrooms were obtained, with those of the 100 nm films considered superior. This study can significantly guide the rational choice of the nano-SiO2 size to meet the packaging requirements of various agricultural products.


2016 ◽  
Vol 30 (2) ◽  
pp. 211-218 ◽  
Author(s):  
Tomasz Oniszczuk ◽  
Agnieszka Wójtowicz ◽  
Leszek Moácicki ◽  
Marcin Mitrus ◽  
Karol Kupryaniuk ◽  
...  

Abstract This paper presents the results covering the mechanical properties of thermoplastic potato starch granules with flax, cellulose fibre, and pine bark addition. A modified single screw extrusion-cooker TS-45 with L/D = 18 and an additional cooling section of the barrel was used as the processing unit. The establishment influence of the fibre addition, as well as the extrusion-cooker screw speed, on the mechanical properties of the thermoplastic starch granules was the main objective of the investigation. The maximum force during compression to 50% of the sample diameter, elastic modulus, and compression strength were evaluated. Significant differences were noted depending on the amount of fibre used, while only an insignificant influence of screw speed on the mechanical properties of the granulate was reported. An increased amount of fibres lowered the maximum force as well as the elastic modulus and compression strength of the thermoplastic starch granulates.


2016 ◽  
Vol 12 (7) ◽  
pp. 673-680 ◽  
Author(s):  
Xingxun Liu ◽  
Cao Lan ◽  
Amjad Al ◽  
Long Yu ◽  
Sumei Zhou

Abstract Incorporation of biodegradable self-reinforced starch composite to starch film is a promising method to improve the mechanical property of the film. In this study, cross-linked starch with different degree of cross-linking level was used as matrix to reinforce in the starch film. The thermal properties and mechanical properties of the cross-linked starch were investigated by differential scanning calorimetory (DSC), thermogravimetric analysis (TGA) and Instron tensile testing respectively. It was found that the cross-linking level greatly impact on the thermal properties of the cross-linked starch. The gelatinization temperature of starch increased with the increasing level of cross-linking modification. In addition, the cross-linking modification showed a positive effect on the mechanical properties of the starch films when the cross-linking level was controlled at a certain range.


2015 ◽  
Vol 29 (3) ◽  
pp. 267-273 ◽  
Author(s):  
Dariusz Chocyk ◽  
Bożena Gładyszewska ◽  
Anna Ciupak ◽  
Tomasz Oniszczuk ◽  
Leszek Mościcki ◽  
...  

Abstract The aim of this paper is to study the influence of water on the mechanical properties of thermoplastic starch films. Experimental observations of Young modulus and the breaking force of thermoplastic starch foils with different percentages of polyvinyl alcohol and keratin additives and screw rotation speeds are reported. Thermoplastic starch foils are prepared by the extrusion method with the bowling from potato starch and glycerol as a plasticizer. Young modulus and the breaking force were determined by the random marker method. Measurements of Young modulus and the breaking force of the films were performed after their production and after dosing with water. It was observed that in all cases Young modulus decreases after dosing with water, but the breaking force lied in the same range. Thermoplastic starch foils produced at the screw rotation speed equal to 60 r.p.m. have the best mechanical properties. The highest value of Young modulus and the breaking force were obtained for samples with a 1% keratin additive.


Author(s):  
Jean-Claude Jésior ◽  
Roger Vuong ◽  
Henri Chanzy

Starch is arranged in a crystalline manner within its storage granules and should thus give sharp X-ray diagrams. Unfortunately most of the common starch granules have sizes between 1 and 100μm, making them too small for an X-ray study on individual grains. There is only one instance where an oriented X-ray diagram could be obtained on one sector of an individual giant starch granule. Despite their small size, starch granules are still too thick to be studied by electron diffraction with a transmission electron microscope. The only reported study on starch ultrastructure using electron diffraction on frozen hydrated material was made on small fragments. The present study has been realized on thin sectioned granules previously litnerized to improve the signal to noise ratio.Potato starch was hydrolyzed for 10 days in 2.2N HCl at 35°C, dialyzed against water until neutrality and embedded in Nanoplast. Sectioning was achieved with a commercially available low-angle “35°” diamond knife (Diatome) after a very carefull trimming and a pre-sectioning with a classical “45°” diamond knife. Sections obtained at a final sectioning angle of 42.2° (compared with the usual 55-60°) and at a nominal thickness of 900Å were collected on a Formvar-carbon coated grid. The exact location of the starch granules in their sections was recorded by optical microscopy on a Zeiss Universal polarizing microscope (Fig. 1a). After rehydration at a relative humidity of 95% for 24 hours they were mounted on a Philips cryoholder and quench frozen in liquid nitrogen before being inserted under frozen conditions in a Philips EM 400T electron microscope equipped with a Gatan anticontaminator and a Lhesa image intensifier.


2019 ◽  
Vol 10 (41) ◽  
pp. 5578-5583 ◽  
Author(s):  
Takumitsu Kida ◽  
Ryo Tanaka ◽  
Koh-hei Nitta ◽  
Takeshi Shiono

The increase of aggregation number in a star-shaped cyclic olefin copolymer was succeeded by using a triazine-based secondary amine, which caused a drastic change in physical properties without changing the thermal properties.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3090
Author(s):  
Anita Ptiček Siročić ◽  
Ana Rešček ◽  
Zvonimir Katančić ◽  
Zlata Hrnjak-Murgić

The studied samples were prepared from polyethylene (PE) polymer which was coated with modified polycaprolactone (PCL) film in order to obtain bilayer films. Thin PCL film was modified with casein/aluminum oxide compound to enhance vapor permeability as well as mechanical and thermal properties of PE/PCL films. Casein/aluminum oxide modifiers were used in order to achieve some functional properties of polymer film that can be used in various applications, e.g., reduction of water vapor permeability (WVTR) and good mechanical and thermal properties. Significant improvement was observed in mechanical properties, especially in tensile strength as well as in water vapor values. Samples prepared with aluminum oxide particles indicated significantly lower values up to 60%, and samples that were prepared with casein and 5% Al2O3 showed the lowest WVTR value.


Author(s):  
Kamila Kapusniak (Jochym) ◽  
Malwina Wojcik ◽  
Karolina Wrobel ◽  
Justyna Rosicka‐Kaczmarek ◽  
Janusz Kapusniak

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Diego Fernando Roa Acosta ◽  
José Fernando Solanilla Duque ◽  
Lina Marcela Agudelo Laverde ◽  
Héctor Samuel Villada Castillo ◽  
Marcela Patricia Tolaba

AbstractIn this study, amaranth starch was extracted by high-impact wet milling and its structural and thermal properties and the effect of NaOH and SDS concentrations on extraction yield were evaluated. The best condition was 55 g of starch/100 g of amaranth, with a decrease from 2.5 to 3.5 kJ/g using different milling energies. The decrease in the protein content of the starch granule is due to an effect of the interaction between surfactant and alkali, preventing the destruction of granules. All starches presented a degree of crystallinity between 21 and 28%. The internal structural changes of the starch granule were monitored by attenuated total reflectance - Fourier-transform infrared (ATR-FTIR) in the region of 990 to 1060 cm−1. Spectra showed significant differences between the peaks at 1032 and 1005 cm−1, corresponding to the crystalline/amorphous region of the starch structure. Changes in viscosity profiles were observed between 0.302 and 1.163 Pa s.


Sign in / Sign up

Export Citation Format

Share Document