Research on Enzymatic Hydrolysis Lignin Modified Petroleum Asphalt

2011 ◽  
Vol 306-307 ◽  
pp. 1080-1083 ◽  
Author(s):  
Zhi Dong Zhao ◽  
Yao Xie ◽  
Xian Su Cheng ◽  
Yan Qiao Jin ◽  
Ming Yang Xu

In this paper, a series of enzymatic hydrolysis lignin modified petroleum asphalts were prepared. The physical properties such as softening point, ductility at low temperature and penetration of the modified asphalt were investigated. The penetration index of asphalt modified with EHL was higher than that of unmodified asphalt, equivalent softening point increased and equivalent brittle point decreased with the increase of EHL amount, which showed that the addition of EHL was favorable to reduce the temperature susceptivity of asphalt. When the EHL was 4%, the ductility was 39.0 cm. Meanwhile, low temperature performance of asphalt could be further improved by adding EHL and a small amount of SBS.

2010 ◽  
Vol 152-153 ◽  
pp. 288-294 ◽  
Author(s):  
Wei Dong Cao ◽  
Shu Tang Liu ◽  
Hong Lu Mao

Polyphosphric acid (PPA) modified asphalt binders were produced in the laboratory using one base asphalt and four levels of PPA contents (0.6%, 1.0%, 1.5% and 2.0% by weight of base asphalt). Penetration test, softening point test, rotation viscosity test, creep test with bending beam rheometer (BBR) and four components test were carried out to study the performance of PPA modified asphalt binders and possible modification mechanism. The results indicate that the high-temperature performance of PPA modified asphalt binders are obviously improved and temperature susceptibility are decreased, but the low-temperature performance slightly decline compared with base asphalt. The PPA content has a very significant effect on softening point whereas it has no significant influence on low-temperature performance according to variance analysis (ANOVA). Finally, four components test reveals that the primary modification mechanism of PPA is the change of chemical composition of asphalt binder.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4367
Author(s):  
Jiaqi Li ◽  
Zhaoyi He ◽  
Le Yu ◽  
Lian He ◽  
Zuzhen Shen

In order to improve the safety of the tunnel asphalt pavement in the event of a fire, and reduce the deterioration of the low temperature crack resistance of the asphalt by the flame retardant. The research uses aluminum hydroxide (ATH) as a smoke suppressant, diethyl aluminum hypophosphite (ADP) as a flame retardant, and halloysite nanotubes (HNTs) as a synergist to modified styrene-butadiene-styrene block copolymer (SBS) modified asphalt (MA). First, the content of ATH, ADP, and HNTs was used as the response variable. The physical properties (Penetration, Softening point, Ductility) and static flame retardant properties (Limiting oxygen index meter, Ignition point) of the asphalt modified by nanocomposite flame-retardant (HNTs-CFRMA) were the response variables. The response surface methodology was used to design the test, and regression models were established to analyze the influence of flame retardants on the performance of asphalt. Then, comprehensively considering the effects of physical properties and flame retardant properties, the normalized desirability function was used to perform a multi-objective optimization design on the components of the nanocomposite flame retardant modifier to obtain the best flame retardant formula. Finally, the rheological properties of MA, conventional flame-retardant modified asphalt (CFRMA), and HNTs-CFRMA were tested based on Dynamic shear rheometer, Multiple stress creep test, Force ductility tester, and Bending beam rheometer. The performance of flame-retardant and smoke suppression were tested by the Cone calorimeter tests. The result shows that ATH, ADP, and HNTs can enhance the high temperature performance of asphalt, reduce the penetration. The addition of HNTs can increase significantly the softening point and reduce the deteriorating effect of flame retardants on the low temperature performance of asphalt; the addition of ATH and HNTs can improve significantly the flame retardancy of asphalt. Based on the desirability function of power exponent, the formulation of the nanocomposite flame retardant with better physical properties and flame retardant properties is ATH: ADP: HNTs = 3:5:1, and the total content is 9 wt%. Nanocomposite flame retardants can improve obviously the high temperature rheological properties of asphalt. The rutting factor and the cracking factor of HNTs-CFRMA improve markedly, and the irrecoverable creep compliance is reduced, compared with MA and CFRMA. Nanocomposite flame retardant can make up for the deterioration of conventional flame retardants on asphalt’s low temperature performance. At the same time, it has better flame-retardant performance and smoke suppression performance.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhen Lu ◽  
Aimin Sha ◽  
Wentong Wang ◽  
Junfeng Gao

Sustainable materials in the field of road pavement have become a research direction in recent years. In this study, the rice husk ash with small dosage of styrene-butadiene-styrene (SBS) was added as a bioadditive into the base asphalt to modify its properties. Different contents (0, 2, 5, 10, and 15%) of rice husk ash (RHA) and 1% of SBS were selected to prepare the modified asphalt. Penetration, softening point, ductility, rotational viscosity test, and temperature sweep test were conducted to investigate the properties of SBS/RHA-modified asphalt binder. Rutting test, moisture susceptibility, and low-temperature cracking were utilized to evaluate the performances of SBS/RHA-modified asphalt mixture. The results showed that the penetration decreased and the softening point and rotational viscosity enhanced while the ductility slightly decreased with the incorporation of rice husk ash. The SBS/RHA-modified asphalt mixture had better high-temperature performance than that of the virgin asphalt mixture but slightly lower moisture stability and low temperature performance. The tensile strength ratio of the virgin and modified asphalt mixture met the requirement of specification. The tensile strain of mixture SR15 was lower than the requirement for the asphalt mixtures on the basis of the specification. For the SBS/RHA-modified asphalt binder based on the comprehensive properties, the content of rice husk ash should not be higher than 15%.


2015 ◽  
Vol 77 (23) ◽  
Author(s):  
Noor Azah Abdul Raman ◽  
Mohd Rosli Hainin ◽  
Norhidayah Abdul Hassan ◽  
Farid Nasir Ani ◽  
M.Naqiuddin M.Warid ◽  
...  

Bio-oil which is derived from pyrolysis palm empty fruit bunch (EFB) is expected to be a potential alternative modifier for asphalt. This study focused on the effect of bio-oil on the penetration index (PI) asphalt. Bio-oil is blended between 2%-10% by weight of virgin asphalt penetration grade 80/100. Physical properties are measured and compared with virgin asphalt by the conventional physical binder test – softening point and penetration. The penetration index (PI) values is calculated to identify the typical values of asphalt type. Based on the findings, it was found that increased bio-oil content can effectively soften the asphalt at the same time maintain the temperature susceptibility. Modification asphalt is still within the grade 80/100 PEN with the addition of 10% maximum of bio oil. The stiffness of modified asphalt need to be further improved by addition polymer for better asphalt binder properties.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2358 ◽  
Author(s):  
Xiyan Fan ◽  
Weiwei Lu ◽  
Songtao Lv ◽  
Fangwei He

To improve the low-temperature performance of the Buton rock asphalt (BRA)-modified asphalt, styrene-butadiene rubber (SBR) was added to it. The BRA-modified asphalt and SBR-BRA composite modified asphalt were prepared by high-speed shearing method. The penetration, softening point, ductility, and Brookfield viscosity of the two kinds of asphalt were measured. The dynamic shear rheometer (DSR) and the beam bending rheometer (BBR) were employed to research the performance of BRA-modified asphalt by adding SBR. The results showed that the pure asphalt in BRA was the main reason to reduce the low-temperature performance of neat asphalt when the content of BRA was 19%. However, the ash in BRA was the main factor to reduce the low-temperature performance when its content was more than 39.8%. When the BRA content was 59.8%, the SBR-BRA composite modified asphalt with SBR contents of 2%, 4%, 6%, and 8%, and it shows that the penetration and ductility of the BRA-modified asphalt are increased by the addition of SBR. The equivalent brittle point was reduced, the stiffness modulus was decreased, and the creep rate was increased. At the same time, the Brookfield viscosity was reduced and the rutting factor was increased. The stiffness modulus of the SBR-BRA composite modified asphalt mixture was increased. That is to say, when SBR was mixed into the BRA-modified asphalt, the low-temperature performance could be remarkably improved based on ensuring high-temperature performance. The low-temperature index of composite modified asphalt was analyzed. It was recommended to apply the equivalent brittle point to evaluate the low-temperature performance of SBR-BRA composite modified asphalt.


2014 ◽  
Vol 599 ◽  
pp. 141-144
Author(s):  
Fei Guo ◽  
Ling Pang ◽  
Zi Qiang Peng ◽  
Zu Huang Zhu

Rejuvenating seal, widely used due to its economic benefits and convenience, is one of the preventive maintenance methods. The rejuvenating seal materials (RSM) work on the surface course of asphalt pavement. This paper described the effects of RSM on the physical properties and rheological properties of aged SBS modified asphalt (ASMA). Two RSM, R and C, were involved in this research. The dosage of each RSM was 2%, 4%, 6%, 8%, and 10% of ASMA by weight. Physical properties, including softening point, penetration and ductility, were tested. Rheological properties were carried out by means of dynamic shear rheometer (DSR). Results show that RSMs, R and C, have improved the low-temperature performance and fatigue resistance. R has more positive effect on low-temperature performance and fatigue resistance of ASMA compared to values of C.


2011 ◽  
Vol 239-242 ◽  
pp. 3346-3349 ◽  
Author(s):  
Yao Xie ◽  
Qiu Feng Lü ◽  
Yan Qiao Jin ◽  
Xian Su Cheng

This paper studies the modification of petroleum asphalt with enzymatic hydrolysis lignin (EHL) epoxy resin. EHL epoxy resin was successfully synthesized by EHL, a novel eco-material with high chemical reactivity. Different amounts of EHL epoxy resin were compounded into AH-70 paving asphalt. The effect of EHL epoxy resin on modified asphalt was examined by penetration, soften point, thin film oven test (TFOT), ductilily tests. The results showed that EHL epoxy resin had marked effect on the high-temperatrue property of increasing softening point at the content of 2-9wt% and it had significantly effect on the low-temperature properties and aging resistance with EHL epoxy resin content of 2-9wt% in modified asphalts. TG analysis indicated that EHL epoxy resin had the high mass loss temperature than pure asphalt. Anti-aging property of asphalt was improved by compounding EHL epoxy resin with asphalt.


Alloy Digest ◽  
2008 ◽  
Vol 57 (1) ◽  

Abstract Invar is an Fe-Ni alloy with 36% Ni content that exhibits the lowest expansion of known metals from very low temperatures up to approximately 230 deg C (445 deg F). Invar M93 is a cryogenic Invar with improved weldability. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear and bend strength as well as fracture toughness and fatigue. It also includes information on low temperature performance as well as forming and joining. Filing Code: FE-143. Producer or source: Metalimphy Precision Alloys.


Alloy Digest ◽  
1971 ◽  
Vol 20 (8) ◽  

Abstract COPPER ALLOY No. 510 is a tin bronze containing about 0.25% phosphorus. It combines high strength and toughness with excellent fatigue properties. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep and fatigue. It also includes information on low temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-238. Producer or source: Brass mills.


Alloy Digest ◽  
1966 ◽  
Vol 15 (11) ◽  

Abstract AMPCOLOY 495 is a high manganese type of aluminum bronze recommended where high strength and corrosion resistance are required along with good weldability. It is recommended for marine equipment and ship propellers. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fracture toughness, creep, and fatigue. It also includes information on low temperature performance and corrosion resistance as well as casting, forming, heat treating, machining, and joining. Filing Code: Cu-171. Producer or source: Ampco Metal Inc..


Sign in / Sign up

Export Citation Format

Share Document