Microstructure and Wear Behavior of Ti-Matrix Functional Gradient Layer

2011 ◽  
Vol 311-313 ◽  
pp. 2093-2098 ◽  
Author(s):  
Fang You Hu ◽  
Ai Yong Cui ◽  
Bin Hu ◽  
Peng Fei Fu ◽  
Pei Zhong Zhao ◽  
...  

To improve the wear-resistance of Ti600, and alleviate thermal stress as well under hyperthermal and excessive temperature difference condition, experiments of Ti-matrix FGM on Ti600 substrate by pulsed Nd:YAG had been carried out. The microstructures, microhardness and phase composition of FGM were investigated. And the friction wear properties of FGM, N-FGM and Ti600 substrate were examined in atmosphere. It was found that a rapidly solidified microstructure consisting of in situ synthesized TiC reinforced phase distributed on FGM substance evenly and dispersely in the form of globular grains had three main different shapes:bulky or imperfect arborescent crystal, fine or approximately equiaxial crystal and chopped fibriform crystal. With the increasing of original Cr3C2content, the number and size of arborescent crystal increased obviously. The distribution of main alloy components was gradient and continuous, presenting the same composition and regularity to the originally preset alloy powder. FGM and N-FGM had an average hardness of approximately 1450, 4.5-5 times of Ti600 substrate, attributed to TiC primary dendrites. With the reducing of weight percentage of TiC, microhardness decreased gradiently and continuously. Meanwhile, the wear resistance of FGM and N-FGM was improved obviously. Friction coefficient, wear loss and wear rate decreased significantly, 0.3-0.5 times of Ti600 substrate.

2021 ◽  
Vol 118 (6) ◽  
pp. 614
Author(s):  
Chellamuthu Ramesh Kumar ◽  
Subramanian Baskar ◽  
Ganesan Ramesh ◽  
Pathinettampadian Gurusamy ◽  
Thirupathy Maridurai

In this research, investigations were carried out on Al6061 base alloy with the changing weight percentage of silicon carbide (SiC) and boron carbide (B4C) with keeping the amount of talc constant. The main objective of this present study was to improve the wear resistance of aluminum alloy using SiC/B4C/talc ceramic particles using stir-casting technique and how the eco-friendly talc content influencing the solid lubricity during the abrasion process. The experiments were conducted via orthogonal array of L27 using Taguchi’s method. The optimum value along with the coefficient of friction was obtained on the basis of grey relational equations and ANOVA, which helped in analysis of most influential input parameters such as applied load, sliding speed, sliding distance and percentage of reinforcement. Conformation tests were performed for the purpose of validation of the experimental results. The specimens were analyzed using scanning electron microscope (SEM) with EDX for micro structural studies. The SiC, B4C and talc presence in the composite helped to improve the mechanical properties, according to the results. The presence of solid lubricant talc as reinforcement to the aluminum hybrid composite reduced the wear properties and decreased the co-efficient friction. These wear resistance improved aluminum metal matrix composites could be used in automobile, defense and domestic applications where high strength and wear resistance required with lesser specific weight.


Author(s):  
Deepak Mehra ◽  
M.M. Mahapatra ◽  
S. P. Harsha

The purpose of this article is to enhance the mechanical properties and wear resistance of the RZ5 alloy used in the aerospace application by adding TiC particles. The present study discusses processing of in-situ RZ5-TiC composite fabricated by self-propagating high temperature (S.H.S.) method and its wear behavior. The effects of TiC particle on mechanical and microstructural properties of the composite are studied. The wear test is performed by varying the sliding distance and applied load. The composite is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results exhibited the properties like strength and hardness of RZ5-10wt%TiC composite has been increased considerably, while grain size is decreased as compared to the RZ5 alloy. The fractography indicated mixed mode (quasi-cleavage and ductile feature) failure of the composites. The wear results showed improvement in wear resistance of the composite. The FESEM showed dominate wear mechanisms are abrasion, ploughing grooves.


2015 ◽  
Vol 1104 ◽  
pp. 155-161 ◽  
Author(s):  
El Oualid Mokhnache ◽  
Gui Song Wang ◽  
Lin Geng

The dry sliding characteristics of three in situ Al2O3/Al-Si composites fabricated with volume fraction of 10, 20 and 30 vol.% were investigated. The effect of sliding parameters on the wear properties was investigated. As the sliding velocity increases the wear loss decreases systematically. When the volume fraction increased to 20 vol.%, an improvement of wear resistance was obtained. However, when the volume fraction was 30 vol.%, a further decrease of wear resistance was observed. In case of low volume fraction (10 vol.%), an extensive plastic deformation by plowing out the ductile Al matrix along with narrow grooves was observed. As the volume fraction increased to 20 vol.%, the abrasive wear by micro grooving is dominant as well as the low load is used. Whereas, when the volume fraction increased to 30 vol.%, besides the effect of large pores, the embedded Al2O3 in the massive Si blocks formed a weaker interface thereby behaving as source of crakes initiation and propagation. As result, fracture, micro-cutting and delaminating are observed as dominant abrasive wear mechanisms


2011 ◽  
Vol 413 ◽  
pp. 262-269 ◽  
Author(s):  
Hossein Beygi ◽  
M. Shaterian ◽  
E. Tohidlou ◽  
M.R. Rahimipour

In order to increase wear resistance of Fe-0.7Cr-0.8Mn cold work tool steels, low weight percentage of Ti incorporated to the alloy and subsequently, because of high affinity between additive titanium and carbon content in this alloy, low weight percentage of TiC in situ formed in matrix. These composites can be used as the milling balls in mining and cement industries because of their improved wear resistance. Formation, shape, size and distribution of TiC particles within the matrix were studied by optical microscopy equipped with image analyzer, optical emission spectroscopy, scanning electron microscopy and energy dispersive spectroscopy. Also microhardness and density of the samples measured. Abrasion wear tests were carried out using a pin on disc type machine. An experimental design based on Taguchi method was applied to investigate the effect of TiC content, applied load, sliding distance and roughness of SiC abrasive paper on wear behavior of samples. The results show that by reinforcing the Fe-0.7Cr-0.8Mn steels with low weight percentage of TiC, wear resistance of these kind of milling balls significantly increases. Sliding distance has the most influence on wear rate of samples, also weight loss of samples decreases as sliding distance, applied load and roughness of grinding decreases.


2017 ◽  
Vol 909 ◽  
pp. 100-105
Author(s):  
Kazunori Asano

Magnesium alloys, in which the in-situ Mg2Si particles were dispersed, were fabricated by a casting process, and the dry sliding wear behavior of the alloys was investigated. Optical microscopy revealed that the polygonal Mg2Si particles were homogeneously dispersed in the alloys. Mg2Si particle volume fractions in the alloys were 7 and 11 vol%. Although the wear loss of the alloy decreased due to the particle-dispersion, there was no difference in the wear loss between the alloys with different volume fractions. The worn surfaces of the particle-dispersed alloys were covered with the crumbled Mg2Si particles, which would prevent seizure between the alloy and the steel counterpart, leading to an improvement in the wear resistance of the alloy. The particle-dispersion slightly decreased the scatter of the coefficient of friction during the wear for the low sliding speed and load, but the effect of the dispersion was not clearly observed for the high speed and load.


Author(s):  
Akash Saxena ◽  
Neera Singh ◽  
Bhupendra Singh ◽  
Devendra Kumar ◽  
Kishor Kumar Sadasivuni ◽  
...  

In the present work, phase, microstructure, and wear properties of Al2O3-reinforced Fe–Si alloy-based metal matrix nanocomposites have been studied. Composites using 2 wt.% and 5 wt.% of Si and rest Fe powder mix were synthesized via powder metallurgy and sintered at different temperature schedules. Iron–silicon alloy specimens were found to have high hardness and high wear resistance in comparison to pure iron specimens. Addition of 5 wt.% and 10 wt.% alumina reinforcement in Fe–Si alloy composition helped in developing iron aluminate (FeAl2O4) phase in composites which further improved the mechanical properties i.e. high hardness and wear resistance. Formation of iron aluminate phase occurs due to reactive sintering between Fe and Al2O3 particles. It is expected that the improved behavior of prepared nanocomposites as compared to conventional metals will be helpful in finding their use for wide industrial applications.


2011 ◽  
Vol 415-417 ◽  
pp. 170-173
Author(s):  
Jing Wang ◽  
Si Jing Fu ◽  
Yi Chao Ding ◽  
Yi San Wang

A wear resistant TiC-Cr7C3/Fe surface composite was produced by cast technique and in-situ synthesis technique. The microstructure and dry-sliding wear behavior of the surface composite was investigated using scanning electron microscope(SEM), X-ray diffraction(XRD) and MM-200 wear test machine. The results show that the surface composite consists of TiC and Cr7C3as the reinforcing phase, α-Fe and γ-Fe as the matrix. The surface composite has excellent wear-resistance under dry-sliding wear test condition with heavy loads.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 682
Author(s):  
Liang Sun ◽  
Wenyan Zhai ◽  
Hui Dong ◽  
Yiran Wang ◽  
Lin He

Cr3C2-Ni cermet is a kind of promising material especially for wear applications due to its excellent wear resistance. However, researches were mainly concentrated on the experiment condition of room temperature, besides high-temperature wear mechanism of the cermet would be utilized much potential applications and also lack of consideration. In present paper, the influence of Mo content on the high-temperature wear behavior of in-situ Cr3C2-20 wt. % Ni cermet was investigated systematically. The friction-wear experiment was carried out range from room temperature to 800 °C, while Al2O3 ceramic was set as the counterpart. According to experimental results, it is indicated that the coefficient of friction (COF) of friction pairs risen at the beginning of friction stage and then declined to constant, while the wear rate of Cr3C2-20 wt. % Ni cermet risen continuously along with temperature increased, which attributes to the converted wear mechanism generally from typical abrasive wear to severe oxidation and adhesive wear. Generally, the result of wear resistance was enhanced for 13.4% (at 400 °C) and 31.5% (at 800 °C) by adding 1 wt. % Mo. The in-situ newly formed (Cr, Mo)7C3 ceramic particle and the lubrication phase of MoO3 can effectively improve the wear resistance of Cr3C2-20 wt. % Ni cermet.


2015 ◽  
Vol 819 ◽  
pp. 268-273 ◽  
Author(s):  
Ramli Rosmamuhamadani ◽  
Shamsuddin Sulaiman ◽  
Mohd Idris Shah Ismail ◽  
Mohamed Arif Azmah Hanim ◽  
Mahesh Talari

Tensile and wear properties of aluminium (Al) based metal matrix composites (MMCs) was prepared by added titanium diboride (TiB2) with in-situ technique by salt route. The salts used in this research were potassium hexafluorotitanate (K2TiF6) and potassium tetrafluoroborate (KBF4). Nanocomposite samples were prepared by casting technique associated with incorporating 3 and 6 wt.% of TiB2 into matrix of Al-6wt.%Cu. Instron and wear tests machine were used to characterize the tensile and wear Al-Cu alloys properties. Results showed that increase in TiB2 content gave the high properties of tensile and wear behavior. The study indicates that TiB2 particles have giving improvement the wear performance of the Al–6wt.%Cu alloy. For a constant load and sliding speed, the wear rate decreases as a function of amount of TiB2 in the composite. The wear rate decrease with increasing in wt.% TiB2 particles for the all loads applied. However, addition of TiB2 particle to the Al–6 wt%.Cu matrix has show the coefficient value of wear decreases regardless of applied load. Study of the wear surfaces both alloy and composites by optical microscope suggests that the improvement in wear resistance is mainly due to the formation of finer groove or debris by content of TiB2.


2006 ◽  
Vol 510-511 ◽  
pp. 562-565
Author(s):  
Jeng Wan Yoo ◽  
Kwon Yeong Lee ◽  
Ji Hui Kim ◽  
Ki Soo Kim ◽  
Seon Jin Kim

A new iron-based wear resistance alloy was developed to replace the Co-containing Stellite 6 alloys in nuclear power industry. The effect of B addition on the wear resistance was investigated. Sliding wear tests of Fe-Cr-C-Si-xB (x = 0.0, 0.3, 0.6, 1.0 and 2.0 wt%) alloys were performed in air at the room temperature under a contact stress of 103 MPa. Low-boron alloys containing less than 0.6 wt% boron showed an excellent wear resistance than any other tested alloys. The improvement was associated with the matrix hardening by promotion of the γ→α′straininduced martensitic transformation occurring during the wear test. However, the alloys containing more than 1.0 wt% boron showed slightly increased wear loss compared to the low-boron alloys because of the absence of the strain-induced martensitic transformation and the presence of the brittle FeB particles, aiding crack initiation.


Sign in / Sign up

Export Citation Format

Share Document