Adsorption of Cu(II) from Aqueous Solution by Peanut Shell

2011 ◽  
Vol 347-353 ◽  
pp. 1852-1855 ◽  
Author(s):  
Zheng Jun Gong ◽  
Cong Cong Tang ◽  
Cai Yun Sun ◽  
Lu Tang ◽  
Jun Chen

A natural peanut shell was used as adsorbent for removal of Cu(Ⅱ) from aqueous solution. Optimum conditions for the elimination of Cu(Ⅱ) from aqueous solution were established by means of a batch adsorption technique. The applicability of the Langmuir and Freundlich adsorption isotherms for the present system was tested. The Langmuir adsorption capacity Qmax (mg/g) is 39.68 and the equilibrium constant b is 0.00776. The Freundlich adsorption capacity k is 0.978 and adsorption intensity n is 1.65. The goodness of fitness was obtained with the Langmuir and Freundlich adsorption isotherms from the equilibrium adsorption data.

SAINTIFIK ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 104-115
Author(s):  
Agusriyadin Agusriyadin

Penelitian ini bertujuan untuk menguji kemampuan AK dan AKPM dalam mengadsorpsi ion Cu (II), pengaruh parameter adsorpsi dan mekanisme adsorpsi. AK dan AKP Madsorben dibuat dari residu ampas kelapa. Adsorben dikarakterisasi dengan FTIR, SEM dan EDS. Pengaruh parameter adsorpsi seperti pH awal, dosis adsorben, waktu kontak dan konsentrasi ion Cu (II) awal diperiksa untuk menentukan kondisi optimum serapan tembaga (II). Ion Cu (II) yang teradsorpsi diukur berdasarkan pada konsentrasi Ion Cu (II) sebelum dan sesudah adsorpsi menggunakan metode AAS. Hasil karakterisasi menunjukkan bahwa struktur pori dan gugus fungsi tersedia pada permukaan adsorben. Menurut percobaan efek pH, kapasitas adsorpsi maksimum dicapai pada pH 7. Waktu kontak optimal dan konsentrasi tembaga awal (II) ditemukan masing-masing pada 120 menit dan 100 mg L-1. Data eksperimental sesuai dengan model kinetik orde dua orde dua, dan Langmuir isoterm adsorpsi yang diperoleh paling sesuai dengan data adsorpsi. Kapasitas adsorpsi maksimum adsorben ditemukan menjadi 4,73 dan 6,46 mg g-1 pada kondisi optimal. The results of characterization showed that the pore structure and the functional groups were available on adsorbent surface. According to the pH effect experiments, the maximum adsorption capacity was achieved at pH 7. Optimum contact time and initial copper(II) concentration were found at 120 min and 100 mg L-1, respectively. The experimental data were comply with the pseudo-second-order kinetic model, and Langmuir adsorption isotherm obtained best fitted the adsorption data. The maximum adsorption capacity of the adsorbents was found to be 4.73 and 6.46 mg g-1 at optimum conditions.


2019 ◽  
Vol 818 ◽  
pp. 77-81
Author(s):  
Ajeng Yulianti Dwi Lestari ◽  
Achmad Chafidz

Removing lead ion in aqueous solution using petai (Parkia speciosa) residue was done well. Petai residue is modified with sodium hydroxide and sulfuric acid before batch adsorption process occured. The results showed that the highest adsorption capacity was found in acid modification that was 2.62 mg/g.Temkin and Dubininmodels fit the adsorption isotherms of all adsorbents.


2014 ◽  
Vol 522-524 ◽  
pp. 401-404 ◽  
Author(s):  
Jia Xi Tang ◽  
Li Na Sun ◽  
Yu Pan Yun ◽  
Miao Miao He ◽  
Mei Hua Lian ◽  
...  

The steel slag was used as adsorbent for the adsorption of Phosphate. the isothermal adsorption test studies adsorption of the steel slag on phosphorus and ammonia nitrogen. The results showed that that the steel slag have very strong adsorption capacity on phosphorus. Langmuir adsorption equation can better describe adsorption of steel slag on phosphorus, the max adsorption quantity of steel slag on phosphorus is 9495.916 mg·kg-1, adsorption intensity is 0.0132.


2015 ◽  
Vol 1130 ◽  
pp. 685-688
Author(s):  
Rui Yi Fan ◽  
Qing Ping Yi ◽  
Qing Lin Zhang ◽  
Zheng Rong Luo

A biosorbent was prepared by treating the persimmon (Diospyros kaki Thunb.) fallen leaves with sodium hydroxide (NaOH). The NaOH concentration and stirring period for the preparation of the biosorbent were adjusted to optimise the Cd(I) adsorption capacity of the biosorbents. Removal of highly toxic Cadmium metal ions from water system using the optimal biosorbent named ‘NPFL’ was investigated using a mimic industrial column. The result showed that NPFL could remove Cd(II) in large quantities from aqueous solution with coexisting metal ions. The raw material, NPFL and Cd(II) loaded NPFL were characterized by SEM-EDS. The reusability of NPFL was also studied by batch adsorption-desorption test.


2016 ◽  
Vol 78 (1-2) ◽  
Author(s):  
Nik Ahmad Nizam Nik Malek ◽  
Nurain Mat Sihat ◽  
Mahmud A. S. Khalifa ◽  
Auni Afiqah Kamaru ◽  
Nor Suriani Sani

In the present study, the adsorption of acid orange 7 (AO7) dye from aqueous solution by sugarcane bagasse (SB) and cetylpyridinium bromide (CPBr) modified sugarcane bagasse (SBC) was examined. SBC was prepared by reacting SB with different concentrations (0.1, 1.0 and 4.0 mM) of cationic surfactant, CPBr. The SB and SBC were characterized using Fourier transform infrared (FTIR) spectroscopy. The adsorption experiments were carried out in a batch mode. The effect of initial AO7 concentrations (5-1000 mg/L), initial CPBr concentrations and pH of AO7 solution (2-9) on the adsorption capacity of SB and SBC were investigated. The experimental adsorption data were analyzed using Langmuir and Freundlich isotherm models. The adsorption of AO7 onto SB and SBC followed Freundlich and Langmuir isotherm models, respectively. The maximum uptake of AO7 was obtained by SBC4.0 (SB treated with 4.0 mMCPBr) with the adsorption capacity of 144.928 mg/g. The highest AO7 removal was found to be at pH 2 and 7 for SB and SBC, respectively. As a conclusion, sugarcane bagasse modified with CPBr can become an alternative adsorbent for the removal of anionic compounds in aqueous solution.


2013 ◽  
Vol 781-784 ◽  
pp. 2265-2268 ◽  
Author(s):  
Shi Yong Wei ◽  
Xu Hong Deng

HDTMA-modified vermiculite (HDTMA-Ver) was formed in a suspension by the interactions between vermiculite and hexadecyltrimethylammonium bromide (HDTMA). For vermiculite and HDTMA-Ver, the pH of the point of zero charge (pHpzc) is 3.16 and 5.09, the surface charge at pH 4.5 is-0.167 and 0.083 mmol/g, and the Langmuir adsorption capacity (qmax) is 4.98 and 8.67 mg/g, respectively. The adsorption data for fluoride by vermiculite and HDTMA-Ver could be fitted by Langmuir model. The as-prepared HDTMA-Ver exhibited excellent ability to remove fluoride ions from aqueous solutions.


2021 ◽  
Vol 22 (2) ◽  
pp. 27-35
Author(s):  
Khalid Khazzal Hummadi

   The aim of this work is to detect the best operating conditions that effect on the removal of Cu2+, Zn2+, and Ni2+ ions from aqueous solution using date pits in the batch adsorption experiments. The results have shown that the Al-zahdi Iraqi date pits demonstrated more efficient at certain values of operating conditions of adsorbent doses of 0.12 g/ml of aqueous solution, adsorption time 72 h, pH solution 5.5 ±0.2, shaking speed  300 rpm, and smallest adsorbent particle size needed for removal of metals.  At the same time the particle size of date pits has a little effect on the adsorption at low initial concentration of heavy metals. The adsorption of metals increases with increasing the initial of metal concentration while above the 85 ppm, the removal efficiency was decreased. The phenomenon of adsorption of heavy metals on to Al-Zahdi Iraqi Date pits is exothermic process. The maximum adsorption capacity according to the Langmuir equation was 0.21, 0.149, and 0.132 mmol/g for Cu2+, Zn2+, and Ni2+ respectively. The adsorption equilibrium was well described by the Freundlich model. The results of Freundlich constants indicated that the adsorption capacity and adsorption intensity of Copper is larger than the Zinc and Nickel. The intraparticle diffusion was involved is this process but it is not the controlling step. The results of this study may inspire to find the optimal operating conditions for adsorption and develop that with large-scale production to clean the polluted water with heavy metals.


Alotrop ◽  
2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Melfi Puspita ◽  
M. Lutfi Firdaus ◽  
Nurhamidah Nurhamidah

The problem of environmental polution caused by waste of batik industry lately is increasing, so it needed a method to overcome that problem. The aim of this study was to determine the ability of activated charcoal from coconut fiber palm in adsorbing Reactive Red-120 and Direct Green-26 dyes in waste of batik along with determining the parameters of isotherms adsorption using UV-Vis Spectrophotometer analysis method. Variations of pH, contact time, adsorbent weight and temperature were carried out as variable to obtain optimum conditions of the adsorption process. The optimum of conditions for Reactive Red-120  occured at pH 3 and a contact time of 30 minutes, while Direct Green-26  occurred at pH 4 and a contact time of 40 minutes, with each adsorbent weight 150 mg and the temperature 30 °C. Adsorption isotherms determined by Freundlich and Langmuir models with maximum adsorption capacity (Qmax) were obtained for the Reactive Red-120  was 400 mg/g, while Direct Green-26 is 169 mg/g. 


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 186
Author(s):  
Do Thi My Phuong ◽  
Nguyen Xuan Loc

This study investigates the adsorption of Safranin O (SO) from aqueous solution by both biochar and magnetic biochar derived from rice straw. Rice straw biochar (RSB) was made by pyrolysis in a furnace at 500 °C, using a heating rate of 10 °C·min−1 for 2 h in an oxygen-limited environment, whilst the magnetic rice straw biochar (MRSB) was produced via the chemical precipitation of Fe2+ and Fe3+. The physicochemical properties of the synthesized biochars were characterized using SEM, SEM- EDX, XRD, FTIR techniques, and N2 adsorption (77 K) and pHpzc measurements. Batch adsorption experiments were used to explore the effect of pH, biochar dosage, kinetics, and isotherms on the adsorption of SO. Experimental data of RSB and MRSB fit well into both Langmuir and Freundlich isotherm models, and were also well-explained by the Lagergren pseudo-second-order kinetic model. The maximum SO adsorption capacity of MRSB was found to be 41.59 mg/g, while for RSB the figure was 31.06 mg/g. The intra-particle diffusion model indicated that the intra-particle diffusion may not be the only rate-limiting step. The collective physical and chemical forces account for the adsorption mechanism of SO molecules by both RSB and MRSB adsorbents. The obtained results demonstrated that the magnetic biochar can partially enhance the SO adsorption capacity of its precursor biochar and also be easily separated from the solution by using an external magnet.


2009 ◽  
Vol 6 (4) ◽  
pp. 1029-1034 ◽  
Author(s):  
A. S. Ekop ◽  
N. O. Eddy

The adsorption capacity ofHelix asperashell for Pb2+, Zn2+and Ni2+has been studied. This shell has the potential of adsorbing Pb2+, Zn2+and Ni2+from aqueous solution. The adsorption potentials ofHelix asperashell is largely influenced by the ionic character of the ions and occurred according to the order Pb2+> Ni2+> Zn2+. The adsorption of Pb(II), Zn(II) and Ni(II) ions from aqueous solutions byHelix asperashell is thermodynamically feasible and is consistent with the models of Langmuir and Freundlich adsorption isotherms. From the results of the study, the shell ofHelix asperais recommended for use in the removal of Pb2+, Zn2+and Ni2+from aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document