Research on 17β-Estradiol Degradation Bacteria Isolated from Activated Sludge and its Degrade Characteristics

2011 ◽  
Vol 356-360 ◽  
pp. 2606-2609
Author(s):  
Li Zhang ◽  
Cui Cui Li

17β-estradiol(E2) has estrogenic activity at very low concentrations and are emerging as a major concern for water quality. Great endeavors have been done on the removal of E2 in wastewater. This article was mainly researched the isolated of E2 degradation bacteria from activated sludge and its degradation characteristics of the bacteria were also researched. According to its physiological biochemical results analysis, this strain was identified as K.pnem. pneumoniae .This strain can use E2 as sole carbon and energy source for growth. The optimal temperature, pH for the bacterial growth and degradation of E2 was 30°C,7.0, respectively, meanwhile degradation rate reached to 86% and 87%; degradation rate and bacterial growth increased along with E2 concentration increasing, 81% E2 was degraded when E2 concentration is 30mg/L, degradation rate decreased when E2>50mg/L; metal ions such as Fe2+and Zn2+almost have no effect on E2 degradation and bacterial growth; Mn2+can promote growth of strain and degradation, while, metal ions such as Hg2+,Ag+,Cu2+have negative effect on bacterial growth and degradation. The degradation process for E2 with initial concentration of 1mg/L indicated that the degradation rate of E2 by strain within 7days was 98%.

2004 ◽  
Vol 50 (8) ◽  
pp. 153-159 ◽  
Author(s):  
J.H. Shi ◽  
Y. Suzuki ◽  
S. Nakai ◽  
M. Hosomi

In order to investigate the potential for microbial degradation of estrogens, and the products formed, activated sludge collected from Korea (ASK) and night soil-composting microorganisms (NSCM) were used to degrade estrogens. Results showed that both ASK and NSCM degraded almost 100% of the natural estrogens estrone (E1), 17β-estradiol (E2), and estriol (E3) from initial concentrations of 20-25 mg/L, while synthetic estrogen, ethynylestradiol (EE2), was not degraded. Analysis of degradation products of E2 by using HPLC-ECD and a consecutive first-order reaction calculation confirmed that E2 was sequentially degraded to E1, which was further degraded to other unknown compounds by ASK and NSCM. We then used the yeast two-hybrid assay to show that the unknown degradation products did not appear to possess estrogenic activity when E1, E2 or E3 were degraded to below the detection limit after 14 days of incubation, indicating that ASK and NSCM not only degrade natural estrogens, but also remove their estrogenic activities.


Author(s):  
Yunjie Zhu ◽  
Yanan Shao ◽  
Min Wei ◽  
Kefu Yu ◽  
Yuanyuan Zhang ◽  
...  

Abstract Sulfate radical (•SO4−)-based advanced oxidation processes are widely used for wastewater treatment. This study explored the potential use of UV/persulfate (UV/PS) system for the degradation of 17β-estradiol (E2). The pH of the reaction system can affect the degradation rate of E2 by UV/PS and the optimum pH was 7.0; Br− and Cl− in water can promote the degradation rate, HCO3− has an inhibitory effect on the reaction, SO42− and cations (Na+, Mg2+, K+) have no effect on the degradation rate. The degradation of E2 by UV/PS was a mineralization process, with the mineralization rate reaching 90.97% at 8 h. E2 in the UV/PS system was mainly degraded by hydroxylation, deoxygenation, and hydrogenation. E2 reaction sites were mainly located on benzene rings, mainly carbonylation on quinary rings, and bond breakage between C10 and C5 resulted in the removal of benzene rings and carboxyl at C2 and C3 sites. In the presence of halogen ions, halogenated disinfection by-products were not formed in the degradation process of E2 by UV/PS. E2 in the UV/PS system could inhibit the formation of bromate. The results of this study suggest that UV/PS is a safe and reliable method to degrade E2.


1999 ◽  
Vol 45 (5) ◽  
pp. 427-432 ◽  
Author(s):  
Jian-Shen Zhao ◽  
Owen P Ward

Using a mixture of three mono nitrophenols as sole carbon, nitrogen and energy sources, mixed cultures were enriched from municipal activated sludge to degrade both nitrophenols and nitrobenzene. Bacterial growth and degradation rate could be increased by supplementing the medium with 0.1% YE. Microorganisms were isolated from the nitrophenols enrichment, and they were identified as strains of Comamonas testosteroni and Acidovorax delafieldii. These strains showed broad degradation ability toward nitrophenols and nitrobenzene.Key words: biodegradation, nitrobenzene, nitrophenol, Comamonas testosteroni, Acidovorax delafieldii, mixed cultures.


2021 ◽  
pp. 152808372110639
Author(s):  
Fu Li ◽  
Pengfei Fei ◽  
Yongchun Dong ◽  
Man Zhang ◽  
Yu Feng ◽  
...  

This present work describes the competitive coordination of iron (III) and copper (II) ions with amidoximated polyacrylonitrile nanofiber and the catalytic performance of the resulting complex (Fe-Cu-AO- n-PAN). The coordination results showed that the increase of the initial concentration of metal ions was beneficial to the increase of the coordination amount. There were both competition and synergistic effects between the two metal ions. But AO- n-PAN was more inclined to coordinate with Fe3+ ions. The promotion effect of Cu2+ ions on iron coordination due to weak positive electric property and small ion radius increased with its initial concentration in the solution. The Langmuir-Freundlich isotherm model among of four selected isotherm models for binary system showed the best fit to the co-coordination reaction between AO- n-PAN and Fe3+-Cu2+ binary solution. Fe-Cu-AO- n-PAN as heterogeneous Fenton catalyst displayed improved catalytic performance than mono-metal complexes due to its better dye adsorption and the synergistic effect between Cu2+ and Fe3+ ions during degradation process, and both the alkali-resistant and the reusability of it were improved at the same time.


2011 ◽  
Vol 694 ◽  
pp. 554-558 ◽  
Author(s):  
Xiao Xia Zhao ◽  
Yan Wang ◽  
Zhu Qing Shi ◽  
Cai Mei Fan

The BiOBr catalyst prepared by the hydrolysis method was investigated with the X-ray diffractometry(XRD) and scanning electron microscope (SEM). The results show that the catalyst was the tetragonal primitive crystal structure and composed of homogeneous particles of fine ferrite plates. At the same time, the photocatalytic activity of BiOBr catalyst was evaluated by methylene orange (MO) in aqueous solution illuminated by Xenon lamp, and the degradation process parameters, such as initial concentration of MO, initial pH value and amount of BiOBr catalyst were discussed to the degradation rate of the MO. Under the following experimental conditions of C0=10mg/L, pH=8, m(BiOBr)=1.0g/L, MO can be entirely degraded after 2.5 hours.


2014 ◽  
Vol 60 (1) ◽  
pp. 5-14 ◽  
Author(s):  
Gang Zhou ◽  
Long-jie Li ◽  
Qing-shan Shi ◽  
You-sheng Ouyang ◽  
Yi-ben Chen ◽  
...  

Enterobacter cloacae is a nosocomial pathogen. The E. cloacae strain BF-17, with a high capacity for biofilm formation, was screened and identified from industrially contaminated samples, carried out in our laboratory. To develop an efficient strategy to deal with biofilms, we investigated the effects of metal ions, including Na+, K+, Ca2+, Mg2+, Cu2+, and Mn2+, and 3 isothiazolones, on elimination of E. cloacae BF-17 biofilm formation by using a 0.1% crystal violet staining method. The results revealed that higher concentrations of Na+ or K+ significantly inhibited E. cloacae BF-17 biofilm development. Meanwhile, Ca2+ and Mn2+ stimulated biofilm formation at low concentration but exhibited a negative effect at high concentration. Moreover, biofilm formation decreased with increasing concentration of Mg2+ and Cu2+. The isothiazolones Kathon (14%), 1,2-benzisothiazolin-3-one (11%), and 2-methyl-4-isothiazolin-3-one (10%) stimulated initial biofilm formation but not planktonic growth at low concentrations and displayed inhibitory effects on both biofilm formation and planktonic growth at higher concentrations. Unfortunately, the 3 isothiazolones exerted negligible effects on preformed or fully mature biofilms. Our findings suggest that Na+, K+, Mg2+, and isothiazolones could be used to prevent and eliminate E. cloacae BF-17 biofilms.


2013 ◽  
Vol 807-809 ◽  
pp. 2739-2742
Author(s):  
Peng Wei Huo ◽  
Mao Bin Wei ◽  
Xin Lin Liu ◽  
Dan Dan Wang ◽  
Zi Yang Lu ◽  
...  

The photocatalytic degradation process of waste water was usually influenced by many factors, such as different ions, addition reagent and pH value. In order to investigate the effect of ions strength in the photocatalytic process, the anions and cations were systematically investigated with P25 TiO2 photocatalyst with Rhodamine B (RB) as waste water in this work. The results showed that the cations of low valence showed minimum negative effect on degradation rate and the most anions showed enhance the degradation rate of RB. The ions strength showed random in the photocatalytic process.


Author(s):  
Mamta Dubey ◽  
Mumtaj Shah

In this study, photo catalytic degradation of chloramphenicol (CAP) using TiO2 as photo catalyst in an annular batch photo reactor was carried out. A full factorial design with three experimental factors; pH (X1), TiO2 concentration (X2) and CAP initial concentration (X3) was selected for degradation process. A multiple regression first order model obtained as which shows a functional relationship between the degradation rate of CAP, three experimental factors and the interactions of the factors on the entire process. The results show that the factor pH and TiO2 have strong effect on the process while CAP concentration has weak effect in comparison to other factors, within the range tested. Interaction (X2X3) and (X1X2X3) also significantly affect the degradation experiment. TiO2 concentration has a positive effect but pH and CAP concentration have negative effect on the entire degradation process. An average of 80.22% of degradation rate of CAP can be achieved from current setup. The regression model is adequate enough with R2 value of 0.9708 and adj-R2 value of 0.9453.


2013 ◽  
Vol 329 ◽  
pp. 61-65
Author(s):  
Zheng Fan ◽  
Guo Liang Zhang ◽  
Zhi Yang Wang ◽  
Zhi Yan Pan ◽  
Yan Li

The photosynthetic bacteria direct red 4BS solution pH, light intensity, inoculum size, the concentration of sodium acetate, and the initial concentration of direct red 4BS degradation rate. The results show that: the initial concentration of 80 mg / L, the inoculation amount of 25% (v / v), pH 8.0, the light intensity 3000lx, sodium acetate, 1.6mg / L under the conditions, after 96 hours of direct red 4BS degradation rate up to 87.5%. Sodium acetate in the reaction can increase the degradation rate, experiments show that: the process of degradation of sodium acetate and direct red 4BS ratio of 20: 1 (m / m) the degradation rate is better. Direct Red 4BS low concentrations, the reaction kinetics of the degradation reaction are first-order kinetics.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (03) ◽  
pp. 167-178 ◽  
Author(s):  
Xin Tong ◽  
Jiao Li ◽  
Jun Ma ◽  
Xiaoquan Chen ◽  
Wenhao Shen

Studies were undertaken to evaluate gaseous pollutants in workplace air within pulp and paper mills and to consider the effectiveness of photo-catalytic treatment of this air. Ambient air at 30 sampling sites in five pulp and paper mills of southern China were sampled and analyzed. The results revealed that formaldehyde and various benzene-based molecules were the main gaseous pollutants at these five mills. A photo-catalytic reactor system with titanium dioxide (TiO2) was developed and evaluated for degradation of formaldehyde, benzene and their mixtures. The experimental results demonstrated that both formaldehyde and benzene in their pure forms could be completely photo-catalytic degraded, though the degradation of benzene was much more difficult than that for formaldehyde. Study of the photo-catalytic degradation kinetics revealed that the degradation rate of formaldehyde increased with initial concentration fitting a first-order kinetics reaction. In contrast, the degradation rate of benzene had no relationship with initial concentration and degradation did not conform to first-order kinetics. The photo-catalytic degradation of formaldehyde-benzene mixtures indicated that formaldehyde behaved differently than when treated in its pure form. The degradation time was two times longer and the kinetics did not reflect a first-order reaction. The degradation of benzene was similar in both pure form and when mixed with formaldehyde.


Sign in / Sign up

Export Citation Format

Share Document