Synthesis of ZnO Nanoparticles by Direct Precipitation Method

2011 ◽  
Vol 380 ◽  
pp. 335-338 ◽  
Author(s):  
Li Juan An ◽  
Jun Wang ◽  
Tie Feng Zhang ◽  
Han Lin Yang ◽  
Zhi Hui Sun

In this study, Zinc oxide (ZnO) nanoparticles were prepared using Zinc nitrate (Zn(NO3)2) and Ammonium carbonate ((NH4)2CO3) in aqueous solutions with proper concentration by a direct precipitation method. The properties of ZnO nanoparticles synthesized were characterized by the thermal gravimetric (TG) and differential thermal gravimetric (DTG), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM), respectively. Both TG and DTG curves of the precursor precipitates show that no further mass loss and thermal effect were observed above the temperature 450°C. The FT-IR results indicated that the precursor of ZnO nanoparticles was zinc hydroxy carbonate. The XRD results show that the prepared ZnO nanoparticles were pure wurtzite structures. TEM photographs demonstrated that ZnO nanoparticles were of a pseudo-spherical shape with an average crystal size of about 65 nm.

2012 ◽  
Vol 217-219 ◽  
pp. 669-672
Author(s):  
Shu Hong Ba ◽  
Zhe Zhang ◽  
Ming Hui Yan ◽  
Zhe Xing Sun ◽  
Xin Peng Teng

Nano-CuO had been successfully synthesized by using direct precipitation method. The prepared sample was characterized by XRD. The luminous intensities of pyrotechnics composite containing KClO4, Mg and nano-CuO were measured. The catalysis of CuO nanocrystal on KClO4 was investigated by thermal analysis instrument. The results show that the average size of nano-CuO is 19 nm and has spherical-shape. When nano-CuO is added into the pyrotechnics composites containing KClO4 and Al, it can improve the igniting and burning performance. The luminous intensity of trinary pyrotechnics composite is also greatly increased. On the other hand, nano-CuO can make thermal decomposition temperature of KClO4 to decrease 97.7 °C, the decalescence amount also reduced to 79.07 J/g. It is obviously that nano-CuO has strong catalysis to KClO4 thermal decomposition. The conclusion is consistent with the measure results of luminous intensity.


2011 ◽  
Vol 675-677 ◽  
pp. 267-270
Author(s):  
Shi Min Liu ◽  
Wan Yu Ding ◽  
Wei Wei Jiang ◽  
Wei Ping Chai

Nanocrystalline SnO2 powder has been synthesized via direct precipitation method starting from Sn, HNO3, HCl, and NH4OH. Thermal properties, crystal structural and morphological properties of the precursor and SnO2 powder were investigated using simultaneous thermogravimetry-differential thermal analysis, X-ray diffraction and transmission electron microscopy. The results indicated that the precursor was SnO2 rather than Sn(OH)2 or Sn(OH)4. On the basis of the precursor, well crystallized SnO2 powder with 4-5 nm in diameter was obtained, after calcined at 350 °C for 2 h.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Satyanarayana Talam ◽  
Srinivasa Rao Karumuri ◽  
Nagarjuna Gunnam

ZnO nanoparticles have been synthesized by precipitation method from Zinc nitrate. The powder was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, selected-area electron diffraction, UV-vis optical absorption, and photoluminescence spectroscopy analyses. XRD patterns showed that ZnO nanoparticles have hexagonal unit cell structure. SEM and TEM pictures reveal the morphology and particle size of prepared ZnO nanoparticles. The UV-vis absorption spectrum shows an absorption band at 355 nm due to ZnO nanoparticles. The photoluminescence spectrum exhibits two emission peaks one at 392 nm corresponding to band gap excitonic emission and another located at 520 nm due to the presence of singly ionized oxygen vacancies. The synthesis method has potential for application in manufacturing units due to ease processing and more economical reagents.


2013 ◽  
Vol 829 ◽  
pp. 784-789 ◽  
Author(s):  
Mahmoud Zolfaghari ◽  
Mahshid Chireh

ZnO belongs to the II-VI semiconductor group with a direct band-gap of 3.2-3.37 eV in 300K and a high exciton binding energy of 60 meV. It has good transparency, high electron mobility, wide, and strong room-temperature luminescence. These properties have many applications in a wide area of emerging applications. Doping ZnO with the transition metals gives it magnetic property at room temperature hence making it multifunctional material, i.e. coexistence of magnetic, semiconducting and optical properties. The samples can be synthesized in the bulk, thin film, and nanoforms which show a wide range of ferromagnetism properties. Ferromagnetic semiconductors are important materials for spintronic and nonvolatile memory storage applications. Doping of transition metal elements into ZnO offers a feasible means of tailoring the band gap to use it as light emitters and UV detector. As there are controversial on the energy gap value due to change of lattice parameters we have synthesized Mn-doped ZnO nanoparticles by co-precipitation method with different concentrations to study the effect of lattice parameters changes on gap energy. The doped samples were studied by XRD, SEM, FT-IR., and UV-Vis. The XRD patterns confirm doping of Mn into ZnO structure. As Mn concentrations increases the peak due to of Mn impurity in FT-IR spectra becomes more pronounces hence confirming concentrations variation. We find from UV-Vis spectra that the gap energy due to doping concentration increases due to the Goldschmidt-Pauling rule this increase depends on dopant concentrations and increases as impurity amount increases.


2022 ◽  
Author(s):  
Monika Patel ◽  
Sunita Mishra ◽  
Ruchi Verma ◽  
Deep Shikha

Abstract Nanotechnology is a completely unique branch of technology that offers with substances in a very small size between (1-100 nm) with various crystal shapes which include spherical nanoparticles, flower shaped, Nano rods, Nano ribbons, and Nano platelets. Metals have ability to produce large number of oxides. These metal oxides play an major role in many areas of chemistry, physics, material science and food science. In this research, Zinc Oxide (ZnO) and Copper (II) oxide nanoparticles were synthesized via sol-gel process using zinc nitrate and copper (II) nitrate as precursor respectively. The characterization of CuO and ZnO nanoparticles was done by using various techniques. X-ray Diffraction (XRD) indicates the crystallinity and crystal size of CuO and ZnO nanoparticle. Fourier transform infrared spectroscopy (FT-IR) was used to get the infrared spectrum of the sample indicating composition of the sample which contains various functional groups. XRD result shows the particle size of CuO at highest peak 29.40140 was 61.25 nm and the particle size of ZnO at highest peak 36.24760 was 21.82 nm. FT-IR spectra peak at 594.56 cm-1 indicated characteristic absorption bands of ZnO nanoparticles and the broad band peak at 3506.9 cm-1 can be attributed to the characteristic absorption of O-H group. The analysis of FT-IR spectrum of CuO shows peaks at 602.09, 678.39, and 730.19cm−1 which refer to the formation of CuO. A broad absorption peak noticed at 3308.2 cm−1 attributed to O–H stretching of the moisture content.


2010 ◽  
Vol 113-116 ◽  
pp. 1770-1773 ◽  
Author(s):  
Xi Hua Zhao ◽  
Min Xu

Cu(OH)2 precursor was synthesized by direct precipitation method and CuSO4 and NaOH were used as raw materials. Then, Cu(OH)2 precursor was calcined in muffle furnace at 400°C for 2h in order that CuO particle was obtained. Through the analysis of the factors affecting the CuO, the paper determined the optimum conditions for the synthesis of nano-CuO with the direct-precipitation method. Then the paper analyzed phase composition and crystal structure of samples using XRD and calculated the average grain size of samples by Scherrer formula, and observed and analyzed by TEM to characterize the morphology and particle size of samples. The optimum precipitation conditions are as follows: when the precipitation agent is 3.2:1, reaction time 40min and precipitant concentration 0.6mol.L-1. The average size of CuO particle prepared under the conditions is 18nm and the yield is 96%.


2011 ◽  
Vol 331 ◽  
pp. 426-429
Author(s):  
Yi Mu ◽  
Lan Wang ◽  
Ming Hua Wu ◽  
Jun Xiong Lin

Modifier for heat transfer printing on cotton fabrics was prepared by semi-continuous emulsion polymerization process with butyl acrylate (BA), styrene (St), acrylonitrile (AN) and cross-linking monomer. FT-IR characterization of modifier groups showed that individual monomer well carried out polymerization. Transmission electron microscopy (TEM) photos demonstrated that latex particles had regular spherical shape and uniform distribution. TGA curves indicated that thermal decomposition temperature of modifier was 439 oC. As for the transfer printing products had good colour fastness, high transfer rate and no formaldehyde.


RSC Advances ◽  
2015 ◽  
Vol 5 (20) ◽  
pp. 15198-15204 ◽  
Author(s):  
R. R. Ozer ◽  
J. P. Hinestroza

A series of isoreticular lanthanide metal–organic frameworks, Ln-MOFs (Ln = Eu, Gd, and Tb), were directly grown on cotton fibers using a room temperature water-based direct precipitation method.


Sign in / Sign up

Export Citation Format

Share Document