Technology Research on Waterworks Sludge for Ceramsite

2011 ◽  
Vol 383-390 ◽  
pp. 3352-3355
Author(s):  
Jun He ◽  
Qi Shan Wang

On the basis of analysis of the component of the sludge from Lingzhuang waterworks and the technological process was studied which use the sludge for raw material to produce the sludge ceramsite. Through a lot of experiments, the several factors affecting the nature of ceramsite were developed and the technological parameters were confirmed. A performance test of the ceramsite shows that when the optimized temperature is 1130°C~1170 °C, the optimized baking time is 5 min, strength of tube pressure of the ceramsite is 8 MPa, bulk density of it is 1200 kg/m3compressive strength of concrete blocks is 40 MPa. So the products could meet the demand on high strength ceremsite. It is gained that the way of waterworks sludge for ceramsite is feasible and can bring certain economical profits, social profits and environmental profits. The products can be used widely to load bearing structure in construction profession.

2020 ◽  
Vol 24 (10) ◽  
pp. 13-19
Author(s):  
Ya.I. Vaisman ◽  
I.S. Glushankova ◽  
L.V. Rudakova ◽  
A.A. Surkov ◽  
A.S. Atanova

The results of studies on the thermal processing of synthetic multi-tonnage polymeric waste (polypropylene, polycarbonate, textolite, PET, organoplastics and tire rubber) with the production of carbon sorbents for technological and environmental purposes are presented. The influence of the nature of the activating agent and the conditions of the process with the production of sorbents with predetermined properties was studied. Analysis of the research results allowed us to establish that the main factors affecting the yield of carbonizate and the formation of a porous structure of carbon sorbents from synthetic polymer waste are the degree of aromaticity and the location of benzene rings in the polymer structure, the proportion of oxygen in the precursor. The criteria for selecting synthetic polymer wastes as raw materials for obtaining carbon sorbents with predetermined properties are established. The results of the research can be used in the development of technologies for obtaining carbon sorbents with predetermined properties from waste synthetic polymers and the selection of technological parameters for processes.


2019 ◽  
Vol 51 (2) ◽  
pp. 223-232 ◽  
Author(s):  
Blasius Ngayakamo ◽  
Eugene Park

The present work has evaluated Kalalani vermiculite as a potential raw material for the production of high strength porcelain insulators. Three porcelain compositions were prepared to contain 0, 20 and 30 wt% of Kalalani vermiculite. Porcelain samples were fabricated using a semi-drying method. The chemical, mineralogical phases and microstructural characterization of the raw materials were carried out using XRF, XRD, and SEM techniques, respectively. Water absorption, bulk density, dielectric and bending strengths were performed on porcelain samples fired up to 1300?C. However, at the sintering temperature of 1250?C, the porcelain sample with 20 wt% of Kalalani vermiculite gave the dielectric strength of 61.3 kV/mm, bending strength of 30.54 MPa, bulk density of 2.21 g/cm3 and low water absorption value of 0.21 % which is the prerequisite properties for high strength porcelain insulators. It was therefore concluded that Kalalani vermiculite has the potential to be used for the production of high strength porcelain insulators


2012 ◽  
Vol 14 (4) ◽  
pp. 351
Author(s):  
K.T. Zhantasov ◽  
Zh.M. Altybayev ◽  
M.K. Zhantasov ◽  
M.M. Yeskendirova ◽  
B.A. Lavrov ◽  
...  

This article is dedicated to utilization of substandard phosphorite fines and simultaneously producing of fluxed sinter. Optimal technological parameters of the sintering process of phosphate fines with addition of the substandard underoxidized nickel-cobalt-containing ore and the internal overburden of coal mining industry were established. The addition of the nickel-cobalt ore and internal overburden containing nickel, cobalt, silicon and aluminum in the charge composition permits to produce the fluxed sinter with improved technological properties, with acidity module 0.90-1.08, with the high impact, abrasion and compression strength. Decrease of the fines output (less than 6 mm) on 10-15% (relatively) in comparison with the existing (traditional) sintering technology is explained with a content of carbon (up to 50%) in the internal overburden and increase of eutectic liquid phase amount at the expense of fusible components of the nickel-cobalt ore. The result of this process is the fluxed sinter with sufficiently high strength and improved technological properties. At the subsequent electro thermal sublimation of phosphorus from the fluxed sinter with high strength properties the ferrophosphorus alloy forms which contains the alloying metals such as Ni, Co, Cr and others. These additions containing silicon and aluminum create an exothermic effect, which leads to decreasing of fuel and energy consumptions. The suggested technology allows to decrease a melting point of the charge on 100 °C due to presence of fusible compounds in the sintering mixture and to reduce the fuel and energy consumption for the sinter production. Found that the introduction of nickel-cobalt ore and internal overburden of coal industry in the sinter charge provides a fluxed sinter phosphorite with module of acidity 0.93-1.08 sufficiently high strength and improved technological properties, in addition, at subsequent electric sublimation of phosphorus from fluxed sinter the ferro alloy alloyed with nickel and cobalt is formed, which is a valuable raw material for the steel industry. According to the research it is assumed that the replacement of natural quartzite used as a flux to the nickel-cobalt-chromium containing ore and internal overburden, which include about 45% of silicon, as well as transition of nickel, cobalt and chromium ore into ferrophosphorous alloy with subsequent sales of its steel industry to a higher price will significantly improve the technical and economic indices of phosphorus production.


2020 ◽  
Vol 2020 ◽  
pp. 1-20 ◽  
Author(s):  
Daoyong Zhu ◽  
Weili Gong ◽  
Yi Su ◽  
Aipeng Guo

Gob-side entry retaining (GSER) is a popular no-pillar mining technology that can increase coal recovery rate. We propose the application of high-strength lightweight (HSLW) concrete to construct the gob-side support body (GSSB) in NO. 411 inclined working face of Jingang Coal Mine. Firstly, the mechanical model of retained roadway was established, and the calculation for limit angle of GSSB stability and support resistance was mathematically derived. Using the performance test, the optimal proportion of LC50 concrete was determined as follows: the water-binder ratio was 0.3; the silica fume dosage was not more than 10%; the fly ash dosage was 10–20%; and the sand ratio was 0.45–0.50. Based on theoretical deduction and laboratory analysis, the width of GSSB was obtained to be 0.75 m, and the optimal arrangement of concrete blocks with “two longitudinal and one horizontal, crisscross, and staggered joints” was determined. FLAC3D software was used to study the influence of different widths and material strengths on the surrounding rock deformation and verify the reasonable width and strength of the designed GSSB. Finally, field monitoring of retained roadway shows that the deformation is controlled in a small range, and the retained roadway effect is better, thus proving the feasibility of HSLW for constructing the support body for GSER. Our findings can serve as a theoretical guide for safety and effective implementation of HSLW as GSSB.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Qinghua Li ◽  
Jintao Liu ◽  
Shilang Xu

As one-dimensional (1D) nanofiber, carbon nanotubes (CNTs) have been widely used to improve the performance of nanocomposites due to their high strength, small dimensions, and remarkable physical properties. Progress in the field of CNTs presents a potential opportunity to enhance cementitious composites at the nanoscale. In this review, current research activities and key advances on multiwalled carbon nanotubes (MWCNTs) reinforced cementitious composites are summarized, including the effect of MWCNTs on modulus of elasticity, porosity, fracture, and mechanical and microstructure properties of cement-based composites. The issues about the improvement mechanisms, MWCNTs dispersion methods, and the major factors affecting the mechanical properties of composites are discussed. In addition, large-scale production methods of MWCNTs and the effects of CNTs on environment and health are also summarized.


2017 ◽  
Vol 10 (2) ◽  
pp. 477-508 ◽  
Author(s):  
C. F.R. SANTOS ◽  
R. C. S. S. ALVARENGA ◽  
J. C. L. RIBEIRO ◽  
L. O CASTRO ◽  
R. M. SILVA ◽  
...  

Abstract This work developed experimental tests and numerical models able to represent the mechanical behavior of prisms made of ordinary and high strength concrete blocks. Experimental tests of prisms were performed and a detailed micro-modeling strategy was adopted for numerical analysis. In this modeling technique, each material (block and mortar) was represented by its own mechanical properties. The validation of numerical models was based on experimental results. It was found that the obtained numerical values of compressive strength and modulus of elasticity differ by 5% from the experimentally observed values. Moreover, mechanisms responsible for the rupture of the prisms were evaluated and compared to the behaviors observed in the tests and those described in the literature. Through experimental results it is possible to conclude that the numerical models have been able to represent both the mechanical properties and the mechanisms responsible for failure.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 843
Author(s):  
Ferawati Ferawati ◽  
Izalin Zahari ◽  
Malin Barman ◽  
Mohammed Hefni ◽  
Cecilia Ahlström ◽  
...  

Yellow pea and faba bean are potential candidates to replace soybean-based ingredients due to their suitability for cultivation in the northern hemisphere, non-genetically modified organisms cultivation practice and low risk of allergenicity. This study examined the functionality of local yellow pea and faba bean protein isolates/concentrate as meat analogue products. The most critical factors affecting the texture properties of meat analogue were also determined. Extrusion was used to produce high-moisture meat analogues (HMMAs) from yellow pea and faba bean protein isolates/concentrates and HMMAs with fibrous layered structures was successfully produced from both imported commercial and local sources. The texture properties of the HMMA produced were mainly affected by the ash, fiber and protein content and water-holding capacity of the source protein. Three extrusion process parameters (target moisture content, extrusion temperature, screw speed), also significantly affected HMMA texture. In conclusion, functional HMMA can be produced using protein isolates derived from locally grown pulses.


2021 ◽  
pp. 132-139
Author(s):  
Zhuldyz Isakovna Satayeva ◽  
Nurbibi Sovetovna Mashanova ◽  
Ainur Bolatbekovna Nurtayeva ◽  
Erzhan Talgatuly Akimzhanov

The article presents the results of the development of a new type of rabbit meat product - meatloaf. The consumption of healthy and nutritious foods rich in macro- and micronutrients, low in lipids and cholesterol, as well as various nutritional supplements, is preferable for the modern consumer. One of the promising types of meat as a dietary raw material is rabbit meat. As a result of the studies, a physicochemical analysis was carried out, the amino acid composition of rabbit meat was determined, and an organoleptic and tasting assessment of rabbit meatloaf was given. The technological scheme, the recipe is developed and the technological parameters of the meatloaf preparation are determined. It is recommended to store meatloaf no more than 10 days at a temperature of 0–2 °C with a humidity of 85-90 %. Meatloaf from rabbit meat has functional properties, contains a large number of vitamins PP – 174.3 mg, potassium minerals – 5052.8 mg, magnesium – 382.4 mg, phosphorus – 2875 mg, sodium – 8598.7 mg.The results of the nutritional and biological value of rabbit meatloaf allow us to make an informed conclusion about the high level of their nutritional value, which clearly illustrates the values of quality indicators.


2019 ◽  
Vol 121 (2) ◽  
pp. 492-504 ◽  
Author(s):  
Waqar Ahmed ◽  
Arsalan Najmi ◽  
Hafiz Muhammad Faizan ◽  
Shaharyar Ahmed

PurposeThe purpose of this paper is to empirically analyze the factors affecting Muslim consumers’ willingness to pay (WTP) for Halal food, products and operations by employing theory of reasoned action.Design/methodology/approachThis study has used quantitative research methodology and collected data from 350 questionnaires from a densely populated city of Pakistan. Partial least squares-structural equation modeling was used to analyze the data.FindingsThe results show that the concerns about Halal, religiosity, perception of usefulness of Halal and product ingredients have a significant impact on WTP for Halal foods, while attitude has an insignificant impact on WTP. Moreover, the extent of demand for Halal certification is significantly affected by WTP.Originality/valueThe study highlighted the concerns of the Muslim consumers with respect to Halalness of the products and operations despite living in a Muslim country. It is recommended that the policy makers, food authorities and health institutions should conduct regular inspections of foods, products and producers’/manufacturers’ operations to ensure that all the procedures from manufacturing of the raw material till the finished goods follow Islamic principles to make them completely Halal.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1499
Author(s):  
Patricio G. Riofrío ◽  
Fernando Antunes ◽  
José Ferreira ◽  
António Castanhola Batista ◽  
Carlos Capela

This work is focused on understanding the significant factors affecting the fatigue strength of laser-welded butt joints in thin high-strength low-alloy (HSLA) steel. The effects of the weld profile, imperfections, hardness, and residual stresses were considered to explain the results found in the S-N curves of four welded series. The results showed acceptable fatigue strength although the welded series presented multiple-imperfections. The analysis of fatigue behavior at low stress levels through the stress-concentrating effect explained the influence of each factor on the S-N curves of the welded series. The fatigue limits of the welded series predicted through the stress-concentrating effect and by the relationship proposed by Murakami showed good agreement with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document