Universal-Joint Sun Tracking Method and Tracking Device

2011 ◽  
Vol 383-390 ◽  
pp. 3605-3609
Author(s):  
Xiao Li Xu ◽  
Yun Bo Zuo

In order to enhance the sun tracking accuracy of photovoltaic power generation system and reduce the manufacturing cost of sun tracking devices, a new sun tracking method and corresponding tracking device was presented in this paper. The new method is to get two driving rotational angle parameters by conversing solar azimuth parameter and solar altitude parameter. According to the new parameters, the solar cell panel is driven to rotate as the universal-joint movement in order to track the sun. The new tracking device consists of solar direction monitoring module, parameter calculation module, driving device, direction error detection module, and feedback control module. It can acquire solar direction parameter to complete new angle parameters conversion and it can amend real-time interaction frequency and stride according to the direction error of solar cell panel. The new tracking device has features of high tracking accuracy, small tracking time intervals, simple structures and low manufacturing cost.

2021 ◽  
Vol 11 (9) ◽  
pp. 4170
Author(s):  
Jeong Eun Park ◽  
Won Seok Choi ◽  
Donggun Lim

Silicon wafers are crucial for determining the price of solar cell modules. To reduce the manufacturing cost of photovoltaic devices, the thicknesses of wafers are reduced. However, the conventional module manufacturing method using the tabbing process has a disadvantage in that the cell is damaged because of the high temperature and pressure of the soldering process, which is complicated, thus increasing the process cost. Consequently, when the wafer is thinned, the breakage rate increases during the module process, resulting in a lower yield; further, the module performance decreases owing to cracks and thermal stress. To solve this problem, a module manufacturing method is proposed in which cells and wires are bonded through the lamination process. This method minimizes the thermal damage and mechanical stress applied to solar cells during the tabbing process, thereby manufacturing high-power modules. When adopting this method, the front electrode should be customized because it requires busbarless solar cells different from the existing busbar solar cells. Accordingly, the front electrode was designed using various simulation programs such as Griddler 2.5 and MathCAD, and the effect of the diameter and number of wires in contact with the front finger line of the solar cell on the module characteristics was analyzed. Consequently, the efficiency of the module manufactured with 12 wires and a wire diameter of 0.36 mm exhibited the highest efficiency at 20.28%. This is because even if the optical loss increases with the diameter of the wire, the series resistance considerably decreases rather than the loss of the short-circuit current, thereby improving the fill factor. The characteristics of the wire-embedded ethylene vinyl acetate (EVA) sheet module were confirmed to be better than those of the five busbar tabbing modules manufactured by the tabbing process; further, a high-power module that sufficiently compensated for the disadvantages of the tabbing module was manufactured.


Author(s):  
J. L. Cagney ◽  
S. S. Rao

Abstract The modeling of manufacturing errors in mechanisms is a significant task to validate practical designs. The use of probability distributions for errors can simulate manufacturing variations and real world operations. This paper presents the mechanical error analysis of universal joint drivelines. Each error is simulated using a probability distribution, i.e., a design of the mechanism is created by assigning random values to the errors. Each design is then evaluated by comparing the output error with a limiting value and the reliability of the universal joint is estimated. For this, the design is considered a failure whenever the output error exceeds the specified limit. In addition, the problem of synthesis, which involves the allocation of tolerances (errors) for minimum manufacturing cost without violating a specified accuracy requirement of the output, is also considered. Three probability distributions — normal, Weibull and beta distributions — were used to simulate the random values of the errors. The similarity of the results given by the three distributions suggests that the use of normal distribution would be acceptable for modeling the tolerances in most cases.


RSC Advances ◽  
2020 ◽  
Vol 10 (59) ◽  
pp. 35831-35839 ◽  
Author(s):  
Mustafa K. A. Mohammed

Carbon-based perovskite solar cells (C-PSCs) are the most promising photovoltaic (PV) due to their low material and manufacturing cost and superior long-term stability.


2011 ◽  
Vol 317-319 ◽  
pp. 890-896
Author(s):  
Ming Jun Zhang ◽  
Yuan Yuan Wan ◽  
Zhen Zhong Chu

The traditional centroid tracking method over-relies on the accuracy of segment, which easily lead to loss of underwater moving target. This paper presents an object tracking method based on circular contour extraction, combining region feature and contour feature. Through the correction to circle features, the problem of multiple solutions causing by Hough transform circle detection is avoided. A new motion prediction model is constructed to make up the deficiency that three-order motion prediction model has disadvantage of high dimension and large calculation. The predicted position of object centroid is updated and corrected by circle contour, forming prediction-measurement-updating closed-loop target tracking system. To reduce system processing time, on the premise of the tracking accuracy, a dynamic detection method based on target state prediction model is proposed. The results of contour extraction and underwater moving target experiments demonstrate the effectiveness of the proposed method.


Author(s):  
Abhishek Kumar ◽  
Nikhil Dhawan

Carbon nanotube bundles were precisely grown atop a p-type silicon wafer that had been treated with catalysts to produce geometries that resemble three-dimensional nano-models to extract more power from the sun. The embedded carbon nanotubes bundles on silicon wafer promise more opportunity for each photon of sunlight to interact with resulting solar cell, as a result of increase of surface area available to produce electricity. The paper discusses morphology of grown nanotubes on silicon wafer along with future prospects of Si-CNTs fabricated solar cells.


2015 ◽  
Vol 787 ◽  
pp. 92-96
Author(s):  
Digvijay Raghunathan

The very low efficiency of solar cells can be attributed to a plethora of reasons. The most important reason being, reflection of sunlight from the solar cell surface. Most of the sunlight incident on the solar cells gets reflected back due to the smooth surface of the silicon wafers. This paper presents a novel method to avoid this by using black silicon solar cells. Black silicon tends to make use of the concept of black body radiation to absorb all the rays incident on it and thereby reducing the reflectivity of the solar cell. The nano-fabrication technique involves usage of special wet-etch techniques to achieve nano-sized pores on the surface of silicon. In case of normal solar cells, usually layers of a suitable anti-reflective coating are given which tend to minimize the amount of reflection. This unfortunately increases the manufacturing cost. The unfavourable conditions of heat and dirt further tend to soil the layer of anti-reflective coating, reducing the gains of anti-reflective coating. Thus, black silicon solar cells provide better efficiency while simultaneously reducing the fabrication cost.


ROTOR ◽  
2018 ◽  
Vol 11 (2) ◽  
pp. 47
Author(s):  
Hattu P D Edwin ◽  
Wabang A Jhon ◽  
Tuati Ambros ◽  
Palinggi Aris

Electrical energy is a very important requirement for the community, along with the development of the era and technological advances that are urgently needed, the need for electrical energy is very large, while the source of electricity that is currently being used still uses energy derived from fossil fuels. As we know that the source of energy derived from fossils is very limited, therefore other energy sources are sought or we are more familiar with renewable energy, one of which is the energy source that comes from the sun, which is better known as solar cell. The electricity from this solar cell is very dependent on sunlight which must illuminate the solar panels so that solar energy can be converted into electrical energy. The output from these solar panels is in the form of voltage and electric current. Some factors that can affect the amount of output or output voltage of electric current in PLTS is, temperature, shadow, (cloud condition, and surrounding environment), and wind speed. Therefore, the purpose of this research is to find out how much the shadow effect on the output voltage and electric current produced by PLTS. It is expected that this research can increase the knowledge of energy derived from the sun in this case the solar cell and know the effect of the shadow on the output voltage and electric current from solar panels.The results showed that there was a shadow effect on voltage reduction and current strength in the PLTS system, namely the 10% shadow area and 12.44 volt DC solar panel current and 2.54 amperage, 100% area covering the voltage output panel and the current of solar panels 12.10 volt DC and 0.22 amperage. The area of the shadow that covers the solar panel affects the output voltage and the strong current of the battery that is the area of the shadow 10% voltage and strong current battery 12.35 volt DC and 18.54 amper, 100% area cover the output panel voltage and strong current battery 11.90 volt DC and 13.85 amperes The shadow area covering the solar panels influences the output voltage and current strength of the inverter, namely the area of the shadow 10% voltage and 226.4 volt AC inverter current and 0.97 amperage, 100% covering the output voltage panel and 220.2 volt AC and 0.66 amperage current. Keywords: Electrical energy, Solar cell, Shadow (cloud condition)


2007 ◽  
Vol 19 (1) ◽  
pp. 34-41 ◽  
Author(s):  
Isaku Nagai ◽  
◽  
Yutaka Tanaka

We developed a visual device that tracks floor images and calculates the movement of a camera on a mobile robot. The mobile robot has caterpillar-tread wheels and uses our visual tracking device for localization. The robot is localized and controlled in real time based on the information on the estimated position and direction using FPGA, SRAM, and a small CPU board. Location and direction error over a closed path is eliminated by searching for an original floor image memorized initially at the point from which the robot started the run. Experimental results demonstrate the advantages of the proposal using the visual tracking device localizing a mobile robot with wheel slippage and under changing light conditions. We also show that the robot runs along a closed path repeatedly without a straying from the track by using the original image to correct accumulated error.


2009 ◽  
Vol 62-64 ◽  
pp. 533-536 ◽  
Author(s):  
E.U. Ubeku ◽  
S.O. Igbinovia

In this paper a motorized solar energy collector system-a driver system that positioned the solar cell panel differently during day-time was design and implemented. The aim is to optimize the amount of solar energy that can be trapped from the sun using a solar cell panel. This is achieved by using a stepper motor, controlled by Atmel AT89C52 microcontroller, to align the panel such that all incident rays strike normal to the panel’s surface thereby maximizing the amount of solar energy that can be trapped from the sun. The alignment is time dependant. This model was implemented and tested and the results proved to be successful in maximizing the energy received from the sun than if the solar panel was fixed at a particular position.


Sign in / Sign up

Export Citation Format

Share Document