Numerical Simulation Analysis for Anti-Penetration of Multilayer Ceramic Composite

2011 ◽  
Vol 396-398 ◽  
pp. 386-389
Author(s):  
Chao Zhang ◽  
Wei Wu ◽  
Yong Li

Use ANSYS / LS-DYNA software to build a numerical model for studying influence of projectile’s penetration velocity, penetration angle and ceramic/metal composite structure on protective capacity of multilayer ceramic composite. The results showed that velocity loss range of projectile running through the multilayer ceramic composite decreased with initial penetration velocity of projectile increased and that the shape of bullet hole showed growing asymmetry with penetration angle increased. Anti-penetration capacity of multilayer ceramic composite protective structure is better than that of single-layer ceramic composite protective structure or single-layer homogeneous steel structure with equal quality.

2018 ◽  
Vol 928 ◽  
pp. 243-248 ◽  
Author(s):  
Yu Liang Chen ◽  
Chin Yu Huang

This study compared the ballistic performance of alumina (Al2O3)/ zirconia (ZrO2) functionally graded material (FGM) specimens with various levels of thickness and ZrO2 content and a pure Al2O3 single-layer ceramic composite (PCM). Ballistic tests were conducted with 0.3-inch armor-piercing (AP) projectiles, and finite element code LS-DYNA was used to examine energy absorption, stress distribution, and ceramic cone failure in the specimens. The findings are as follows: First, regarding energy absorption per unit of areal density, the 5% FGMs had the highest ballistic performance, which increased by up to 8%. By contrast, the ballistic performance of the 15% FGMs declined significantly to lower than that of the PCM. Second, the capability of the ceramic cone to withstand stress damage and projectiles was significantly greater in the 5% FGMs than in the 15% FGMs. Third, the wave impedance variations increased with the ZrO2 content in each layer, thereby enhancing the interactions between impact waves and aggravating ceramic damage. Thus, the intensities of transmission and reflection waves in the 15% FGMs increased, thereby causing reductions in its ballistic performance.


2020 ◽  
Vol 39 (6) ◽  
pp. 9015-9026
Author(s):  
Lilin Wang

The light steel structure is always the common material of the movable plank house, and the new bud light steel system is the light steel system used for a long time after the earthquake. This paper discusses the mechanical system of the light steel structure of Huoshenshan hospital, which was built in ten days. In the process of building, the geometric form of roof stress has changed. In the actual structural design, the designer seldom takes the calculation of construction load into account, which is quite different from the actual construction process. So it is very important to simulate and monitor the whole process of structure installation. In this paper, the finite element software MIDAS / Gen is used for simulation analysis to ensure that the simulation analysis results are consistent with the construction process, the model material and the actual size are completely consistent, and the stress simulated by the software can meet the needs of the actual stress through the actual measurement.


Author(s):  
Elizabeth M. Mamros ◽  
Chetan P. Nikhare

In the automotive and aerospace industries, cost and overall weight are major opponents that are affecting design opportunities. Research to investigate possible cost and weight reduction methods is continuously being performed focusing especially on the hybrid materials being used to manufacture parts. Currently, different types of metals with polymers are being chosen to make punched parts, but the deformation of the materials has not been fully investigated. The way that the material deforms will dictate the material properties held by the subsequent parts. Without knowing these material properties, it is difficult to prevent manufacturing problems during various processes. One major problem encountered when forming solid metal parts is that when the die is removed, the deformed parts change shape due to the elastic properties of the material. This shape change is called springback. This undesirable result causes the parts to be the incorrect shape and to not align correctly during assembly. One possible solution would be to investigate the material properties of trilayer hybrid materials consisting of metal and composite layers adjoined by adhesive. Trilayer channels will be tested by punching and measuring the resulting springback. Two different trilayer design setups will be tested, composite metal composite sandwich and metal composite metal sandwich, and will be compared with the deformation in a single layer metal channel. The outcome of these tests will determine which trilayer design will have the greatest success in reducing the undesirable springback effects.


2012 ◽  
Vol 152-154 ◽  
pp. 34-39
Author(s):  
Qing Sheng Guo ◽  
Qing Shan Yang

Considering the structure type of the steel staggered-truss (SST) system, the effect of infilled walls will be major and need to be studied amply, some scientific design regulations need to be found for referrence. Based on two different 3D models considering or ignoring the stiffness of infilled walls (SIW), a numerical investigation is presented on the structural behaviors of the SST system utilizing the finite element 3D simulation analysis soft ware ETABS. The longitudinal structure is asymmetrical due to the SIW, it causes the torsion forces in the building. Comparing to the different results of response spectrum analysis, including storey drift and equivalent base shear under frequent earth quake and rare earth quake, some conclusions were made, including the capacity of the SST system under seismic load and the effect of the SIW for SST system. The increased base shear force factors due to the effect of the SIW were suggested for SST structure design, it is different from the other steel structure types.


2006 ◽  
Vol 326-328 ◽  
pp. 509-512
Author(s):  
Sung Han Rhim ◽  
Seung Wook Baek ◽  
Soo Ik Oh

In low temperature co-fired ceramic (LTCC) packaging which offers a good performance to produce multilayer structures with electronic circuits and components, the via-hole fabrication of LTCC ceramic-PET double layer sheets (green sheets or green tapes) by micro-scale punching plays an important role in providing an electric path for the interconnection between layers. Although conventional punching has been used widely and many researchers have provided useful insights of the process, they are restricted to the punching of single layer material. This paper discusses the characteristic of micro via-hole punching of double layer sheets and the optimum process condition for via-holes of good quality. Workpiece (double layer sheet) used in the present investigation consists of LTCC ceramic composite material layer (ceramic layer) of 20~100*m in thickness and PET layer of 38 and 75*m in thickness by tape-casting. The diameter of via-holes ranges from 100~300*m.


2014 ◽  
Vol 540 ◽  
pp. 201-204
Author(s):  
Jian Ping Li ◽  
Jie Ruan ◽  
Pin Tan ◽  
Xian Jun Wang

Steel structure climbing formwork has been widely used in bridge pier and bridge tower, etc. But the design of 30 degrees slope climbing formwork design is rarely involved. The climbing formwork which in the upper surface of leaning bridge tower is affected by concrete buoyancy and the downside is affected by concrete gravity .That cause insufficient stiffness,deformation of the template,non-uniform cross-section of the bridge and large angle deviation which have great harm to the bridge quality .This paper which combined the construction project of Huaibei Xiangwang Bridge establish the mode of climbing formwork, then, import the mode to the Workbench14.5 proceeding simulation analysis. Getting the stress and deformation of the climbing formwork, check the strength and stiffness .Then optimize the structure of climbing formwork to ensure the stiffness and control the deformation of the template. The stress of downside climbing formwork after optimization is uniform and maximum stress is reduced about 30% .This paper provide a reference to the design of the climbing formwork used in the large angle leaning bridge tower.


2012 ◽  
Vol 170-173 ◽  
pp. 3668-3671
Author(s):  
Wei Hua Ma ◽  
Qing Juan Meng ◽  
Le Jie Liang

Numerical simulate analyze a super-long steel plant with ANSYS,calculate the structure in expansion joint,without expansion joint and without long circle bore structure of these three kind situations,analyze temperature stress and vertical displacement of the main component when the temperature changes.Setting expansion joint can control the temperature stress in a small range,which is a widely used method at present.However,not setting expansion joint and the use of long hole structure connection can control the size of the temperature stress and ensure the structure globality,it can provide design basis of this method in engineering applications.


Author(s):  
Yu. A. Balinova ◽  
D. V. Graschenkov ◽  
A. A. Shavnev ◽  
V. G. Babashov ◽  
A. S. Chaynikova ◽  
...  

This paper describes achievements of the All-Russian Scientific Research Institute of Aviation Materials in the field of creating high-temperature heat-shielding, ceramic and metal-ceramic composite materials. The advantages and prospects of applying the developed materials in the manufacturing of structural elements of aircraft and friction joints are discussed. The synthesis features and basic properties of metal-ceramic composite materials based on light alloys, refractory metal matrices, ceramic composite materials for use in heavily loaded structural elements of modern aircraft are presented. The main achievements in the field of heat-shielding materials based on refractory oxide fibres are presented, along with their properties and application in new-generation aircrafts.


2021 ◽  
Vol 250 ◽  
pp. 04001
Author(s):  
Yohan Cosquer ◽  
Patrice Longère ◽  
Olivier Pantalé ◽  
Claude Gailhac

The complexity of ballistic protections increases with their efficiency. On this basis, an exclusively empirical approach is not adapted to optimise complex protection systems and the resort to numerical simulations is preferred if not mandatory. The present study proposes a methodology aiming at optimising complex multi-layer ballistic armours based on an experimental-numerical correlation. A multi-layer system is taken as example. A numerical model is first calibrated according to impact-on-monolithic-target test results. Once the model is validated, an optimisation process considering multi-layer configurations involving a sharp-nosed threat modifies the plates’ thicknesses in order to minimise the total mass while ensuring the system’s protective capacity in terms of residual velocity. The optimisation process shows that a single layer system is more efficient than a multi-layer one in the studied case.


Sign in / Sign up

Export Citation Format

Share Document