Simplified Three-Dimensional Thermomechanical Applications of Ball Grid Array Package

2011 ◽  
Vol 403-408 ◽  
pp. 256-265
Author(s):  
Jia Mao ◽  
Wei Hua Zhang

Three dimensional finite element models were created utilizing APDL (ANSYS Parametric Design Language) for typical multi-chip BGAP (Ball Grid Array Packages) with different sizes to analyze the structure stress and strain when loading steady thermal loads upon them. Subsequently an improved modeling approach including equivalent beam and critical solder ball joint for simplification was studied and introduced. The Darveaux method based on plastic deformation energy accumulation for predicting fatigue life of solder ball joint under thermal cyclic loading was applied to the improved model for calculation, and effects of main design parameters upon fatigue life were studied accordingly. The numerical results reflected the stress distribution and varying traits of the package, compare of results between improved model and detailed model indicates that the simplified modeling method is quite effective and available for different types of analysis. Methods and results of this paper are of certain reference value for the design and optimization for similar kind of packages.

1999 ◽  
Author(s):  
T. M. Ying ◽  
K. C. Toh

Abstract The constriction resistance model is employed for the thermal analysis at the solder ball joint of a Ball Grid Array (BGA) package. The behavior of heat dissipation in solder joint is also analyst through Finite Element Modeling (FEM) and compared with the analytical model. The principle of constriction and spreading resistances is analyzed in detail because of the geometrical complexity encountered in BGA solder joints. The total resistance across the solder joint includes the internal resistance and external resistance. The internal resistance, which is the main focus of the analysis, consists of material resistance and constriction resistance. It is a function of material conductivity, thermal boundary conditions and geometric parameters. FEM solutions are in good agreement with analytical results of thermal resistance for single solder ball joint and multiple solder ball joints. The analytical resistance provides an accurate prediction on the temperature drop across the array of solder balls and hence the overall performance of the BGA packages. The pitch size is the main parameter in the investigation to study the heat dissipation of solder ball joints.


2006 ◽  
Vol 306-308 ◽  
pp. 1043-1048
Author(s):  
Yi-Ming Jen ◽  
Hsi Hsin Chien ◽  
Tsung-Shu Lin ◽  
Shih Hsiang Huang

This research studied the thermal fatigue life for eutectic solder balls of thermally enhanced flip-chip plastic ball grid array (FC-PBGA) packages with different lid materials under thermal cycling tests. Three FC-PBGA packages with different lid materials, i.e., Al, AlSiC, and Cu, were utilized to examine the lid material effect on solder ball reliability. The cyclic stress/strain behavior for the packages was estimated by using the nonlinear finite element method. The eutectic solder was assumed to be elastic-plastic-creep. The stable stress/strain results obtained from FEM analysis were utilized to predict the thermal fatigue life of solder balls by using the Coffin-Manson prediction model. Simulation results showed that the fatigue life of the FC-PBGA package with a Cu lid was much shorter than FC-PBGA packages with other lid materials. The relatively shorter fatigue life for the FC-PBGA package with a Cu lid was due to the complex constrained behavior caused by the thermal mismatch between the lid, substrate and the printed circuit board. The difference was insignificant in the fatigue lives between the package with an Al lid and the conventional package.


Author(s):  
T. E. Wong ◽  
C. Y. Lau ◽  
L. A. Kachatorian ◽  
H. S. Fenger ◽  
I. C. Chen

The objective of the present study is to evaluate the impact of electronic packaging design/manufacturing process parameters on the thermal fatigue life of ball grid array (BGA) solder joints. The four selected parameters are BGA under-fill materials, conformal coating, solder pad sizes on printed wiring board, and BGA rework, with each having either two or three levels of variation. A test vehicle (TV), on which various sizes of BGA daisy-chained packages are soldered, is first designed and fabricated, and then subjected to temperature cycling (−55°C to +125°C) with continuous monitoring of solder joint integrity. The total of 15 experimental cases is used in the present study. Based on monitored results, a destructive physical analysis is conducted to further isolate the failure locations and determine the failure mechanisms of the solder joints. Test results indicate that the influence of these design parameters on fatigue life is dependent on the particular package, in some instances improving the fatigue life tenfold.


Author(s):  
C.H. Zhong ◽  
Sung Yi

Abstract Ball shear forces of plastic ball grid array (PBGA) packages are found to decrease after reliability test. Packages with different ball pad metallurgy form different intermetallic compounds (IMC) thus ball shear forces and failure modes are different. The characteristic and dynamic process of IMC formed are decided by ball pad metallurgy which includes Ni barrier layer and Au layer thickness. Solder ball composition also affects IMC formation dynamic process. There is basically no difference in ball shear force and failure mode for packages with different under ball pad metallurgy before reliability test. However shear force decreased and failure mode changed after reliability test, especially when packages exposed to high temperature. Major difference in ball shear force and failure mode was found for ball pad metallurgy of Ni barrier layer including Ni-P, pure Ni and Ni-Co. Solder ball composition was found to affect the IMC formation rate.


Author(s):  
Irsalan Arif ◽  
Hassan Iftikhar ◽  
Ali Javed

In this article design and optimization scheme of a three-dimensional bump surface for a supersonic aircraft is presented. A baseline bump and inlet duct with forward cowl lip is initially modeled in accordance with an existing bump configuration on a supersonic jet aircraft. Various design parameters for bump surface of diverterless supersonic inlet systems are identified, and design space is established using sensitivity analysis to identify the uncertainty associated with each design parameter by the one-factor-at-a-time approach. Subsequently, the designed configurations are selected by performing a three-level design of experiments using the Box–Behnken method and the numerical simulations. Surrogate modeling is carried out by the least square regression method to identify the fitness function, and optimization is performed using genetic algorithm based on pressure recovery as the objective function. The resultant optimized bump configuration demonstrates significant improvement in pressure recovery and flow characteristics as compared to baseline configuration at both supersonic and subsonic flow conditions and at design and off-design conditions. The proposed design and optimization methodology can be applied for optimizing the bump surface design of any diverterless supersonic inlet system for maximizing the intake performance.


2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
Xin Wan ◽  
Ximing Liu ◽  
Jichen Miao ◽  
Peng Cong ◽  
Yuai Zhang ◽  
...  

Pebble dynamics is important for the safe operation of pebble-bed high temperature gas-cooled reactors and is a complicated problem of great concern. To investigate it more authentically, a computed tomography pebble flow detecting (CT-PFD) system has been constructed, in which a three-dimensional model is simulated according to the ratio of 1 : 5 with the core of HTR-PM. A multislice helical CT is utilized to acquire the reconstructed cross-sectional images of simulated pebbles, among which special tracer pebbles are designed to indicate pebble flow. Tracer pebbles can be recognized from many other background pebbles because of their heavy kernels that can be resolved in CT images. The detecting principle and design parameters of the system were demonstrated by a verification experiment on an existing CT system in this paper. Algorithms to automatically locate the three-dimensional coordinates of tracer pebbles and to rebuild the trajectory of each tracer pebble were presented and verified. The proposed pebble-detecting and tracking technique described in this paper will be implemented in the near future.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 295
Author(s):  
Pao-Hsiung Wang ◽  
Yu-Wei Huang ◽  
Kuo-Ning Chiang

The development of fan-out packaging technology for fine-pitch and high-pin-count applications is a hot topic in semiconductor research. To reduce the package footprint and improve system performance, many applications have adopted packaging-on-packaging (PoP) architecture. Given its inherent characteristics, glass is a good material for high-speed transmission applications. Therefore, this study proposes a fan-out wafer-level packaging (FO-WLP) with glass substrate-type PoP. The reliability life of the proposed FO-WLP was evaluated under thermal cycling conditions through finite element simulations and empirical calculations. Considering the simulation processing time and consistency with the experimentally obtained mean time to failure (MTTF) of the packaging, both two- and three-dimensional finite element models were developed with appropriate mechanical theories, and were verified to have similar MTTFs. Next, the FO-WLP structure was optimized by simulating various design parameters. The coefficient of thermal expansion of the glass substrate exerted the strongest effect on the reliability life under thermal cycling loading. In addition, the upper and lower pad thicknesses and the buffer layer thickness significantly affected the reliability life of both the FO-WLP and the FO-WLP-type PoP.


1998 ◽  
Vol 11 (1) ◽  
pp. 570-570
Author(s):  
Johan Holmberg ◽  
Lennart Lindegren ◽  
Chris Flynn

We use the Hipparcos survey to derive an improved model of the local galactic structure. The availability of parallaxes for all the stars permits direct determination of stellar distributions, eliminating the basic indeterminacy of classical methods based on star counts. Hipparcos gives for the first time a truly three-dimensional view of the solar vicinity, and a complete, homogeneous and highly accurate set of magnitudes and colours. This means that new techniques can be applied in the treatment of the data which place strong constraints on a model that tries to describe the local Galactic structure. Here we investigate how well a static model of low complexitycan describe the Hipparcos observations. The interpretation of the Hipparcos data is complicated by various observational errors and selection effects that are hard to treat correctly. We do not try to correct the data, but instead use a model and subject this model to the same observational errors and selection effects. A model catalogue is created that can be compared with the observed catalogue directly in the observational domain, thereby eliminating the effects from various biases. Many features in the HR diagram are for the first time seen in field stars thanks to Hipparcos, such as the slanted red giant clump, previously seen in rich old open clusters such as Berkeley 18. This and other features ofthe observed HR diagram are well reproduced by the model thanks to the rather detailed modelling of the joint Mv/B — V distribution. Actually, separate distributions were derived for the three different components, disk, thick disk and halo, using the kinematic characteristics of the components to discriminate between them.


Author(s):  
Xian-Kui Zhu ◽  
Rick Wang

Mechanical dents often occur in transmission pipelines, and are recognized as one of major threats to pipeline integrity because of the potential fatigue failure due to cyclic pressures. With matured in-line-inspection (ILI) technology, mechanical dents can be identified from the ILI runs. Based on ILI measured dent profiles, finite element analysis (FEA) is commonly used to simulate stresses and strains in a dent, and to predict fatigue life of the dented pipeline. However, the dent profile defined by ILI data is a purely geometric shape without residual stresses nor plastic deformation history, and is different from its actual dent that contains residual stresses/strains due to dent creation and re-rounding. As a result, the FEA results of an ILI dent may not represent those of the actual dent, and may lead to inaccurate or incorrect results. To investigate the effect of residual stress or plastic deformation history on mechanics responses and fatigue life of an actual dent, three dent models are considered in this paper: (a) a true dent with residual stresses and dent formation history, (b) a purely geometric dent having the true dent profile with all stress/strain history removed from it, and (c) a purely geometric dent having an ILI defined dent profile with all stress/strain history removed from it. Using a three-dimensional FEA model, those three dents are simulated in the elastic-plastic conditions. The FEA results showed that the two geometric dents determine significantly different stresses and strains in comparison to those in the true dent, and overpredict the fatigue life or burst pressure of the true dent. On this basis, suggestions are made on how to use the ILI data to predict the dent fatigue life.


Sign in / Sign up

Export Citation Format

Share Document