Kinetics Study on Non-Isothermal Crystallization of Amorphous Alloy Mg65Cu15Ag10Y10

2011 ◽  
Vol 413 ◽  
pp. 432-438
Author(s):  
Xiao Jun Wang ◽  
Tian Dong Xia ◽  
Xue Ding Chen

The crystallization kinetics of amorphous alloy Mg65Cu15Ag10Y10has been studied by differential scanning calorimetry in the mode of continuous heating annealing. It is found that both DSC curves and activation energy show a strong dependence on the heating rate. The activation energy for crystallization are determined as 186.1 and 184.4 KJ mol−1for the heating rates β=5-20 Kmin−1, and 107.5 and 110.0 KJmol−1for the heating rates β=20-80Kmin−1, when using the Kissinger equation and the Ozawa equation, respectively. Local activation energy at any volume fraction crystallized was obtained by the general Ozawa's isoconversional method. The average value of local activation energy for heating rates ranging from 5 to 20Kmin−1is 180.9 KJ mol−1and for heating rates ranging between 20 and 80Kmin−1is 110.2 KJ mol−1. Using the Suriñach curve fitting procedure, the kinetics mode was specified. The JMA kinetics is manifested as a rule in the early stages of the crystallization. The JMA exponent,n, initially being larger than 4 and continuously decreases to about 2 along with the development of crystallization. The NGG-like mode dominates in the advanced stages of the transformation. These two modes are mutually independent. The proportion between the JMA-like and the NGG-like modes is related to the heating rate.

2017 ◽  
Vol 727 ◽  
pp. 233-238 ◽  
Author(s):  
Qian Gao ◽  
Zeng Yun Jian ◽  
Jun Feng Xu ◽  
Man Zhu

The crystallization kinetics of melt-spun Cu64.5Zr35.5 amorphous alloy ribbons was investigated using differential scanning calorimetry (DSC) at different heating rates. Besides, the Kissinger and isoconversional approaches were used to obtain the crystallization kinetic parameters. As shown in the results, the activation energies for glass transition and crystallization process at the onset, peak and end crystallization temperatures were obtained by means of Kissinger equation to be 577.65 ± 34, 539.86 ± 54, 518.25 ± 20 and 224.84 ± 2 kJ/mol, respectively. The nucleation activation energy Enucleation is greater than grain growth activation energy Egrowth, indicating that the nucleation process is harder than grain growth. The local activation energy Eα decreases in the whole crystallization process, which suggests that crystallization process is increasingly easy.


2011 ◽  
Vol 99-100 ◽  
pp. 1052-1058 ◽  
Author(s):  
Chun Xia Hu ◽  
Gai Lian Li ◽  
Yang Shi

The crystallization kinetics of Cu47.5Zr47.5Al5 BMG was studied by differential scanning calorimetry (DSC) using the mode of continuous heating and isothermal annealing. It is found that Tg, Tx, and Tp, display a dependence on the heating rate in the case of continuous heating. The activation energies, Eg, Ex and Tp determined by the Kissinger method, yield 445, 264 and 285 kJ/mol, respectively. The local activation energy, E(x), was determined by the Doyle-Ozawa method, which gives the average activation energy 204 kJ/mol. On the other hand, the isothermal kinetics was modeled by the Johnson-Mehl-Avrami (JMA) equation, the Avrami exponent versus crystallization fraction was calculated at different temperatures. Details of nucleation and growth behaviors are discussed in terms of the local Avrami exponent and local activation energy during the isothermal crystallization. X-ray shows that the quenched BMG only includes the glass single phase. The BMG heated to 873 K has the precipitation of the body-center cubic (BCC) CuZr.


Author(s):  
Azzedine Missoum ◽  
Ashwani K. Gupta ◽  
Jianrong Chen

Abstract Results on the thermal destruction behavior during the decomposition of cellulose under controlled conditions are presented. Thermogravimetric (TGA) and Differential Scanning Calorimetry (DSC) tests have been carried out on the celluose samples under conditions of various heating rate and surrounding gas environment. Pyrolysis times were also measured for different size particles having different moisture contents in a controlled mixing history reactor (CMHR). The global decomposition kinetics were investigated and it was found that the decomposition process is shifts to higher temperatures at higher heating rates as a result of the competing effects of heat and mass transfer, product diffusion and the reactions kinetics. The Arrhenius parameters for pyrolysis were determined using a first order decomposition reaction of the type, dm = −km dt. It was found that the activation energy, heat of pyrolysis and char yield are a strong function of the heating rate. An increase in heating rate from 5 to 60°C/min resulted in a change of activation energy from 204.19 to 138.31 kJ/mole °C. This heating rate dependence of the kinetics is discussed. The overall decomposition process of the examined materials is generally endothermic. In general, heat transfer, mass diffusion, product evolution, heating rate, temperature and environment are the parameters that control the decomposition process. It was also shown that heat transfer and mass transport have the most effects on the decomposition process.


2012 ◽  
Vol 706-709 ◽  
pp. 1311-1317 ◽  
Author(s):  
S.A. Hasheminezhad ◽  
M. Haddad-Sabzevar ◽  
S. Sahebian

Non-isothermal crystallization kinetics of Co67Fe4Cr7Si8B14amorphous ribbons was studied by differential scanning calorimetry (DSC) technique under 10, 20, 30, 40 and 80 °Cmin-1heating rates. It is found that Co67Fe4Cr7Si8B14amorphous alloy exhibits two-stage crystallization on heating. The two crystallization peaks shift to higher temperatures with increasing heating rate. The apparent activation energies (EC) for the first stage of crystallization were determined as 443.44 and 434.47 kJmol-1by using the Kissinger and Ozawa equations, respectively. Frequency factor (A) estimated to be 1.084×1026s-1using Kissinger equation. Kinetics parameters such as Crystallization exponent (n) and dimensionality of growth (Ndim) were determined using JMA (Johnson-Mehl-Avrami) method. Details of the nucleation and growth behaviours during the non-isothermal crystallization were studied in terms of local activation energy EC(x) by the OFW (Ozawa, Flynn and Wall) method. Also the activation energy for nucleation (En) and growth (Eg) separately estimated.


Chemija ◽  
2020 ◽  
Vol 31 (3) ◽  
Author(s):  
Ehab AlShamaileh ◽  
Muayad Esaifan ◽  
Qusay Abu-Afifeh

The formation of metal oxide-based hydroxysodalite by alkali-activation of kaolinite is studied using X-ray diffraction (XRD) study and differential scanning calorimetry (DSC) analysis. Different metal oxides (CoO, MgO, FeO and SiO2) were used to form the metal oxide-based hydroxysodalite. The transformation from kaolinite into hydroxysodalite is confirmed by XRD. In the thermodynamic study, the maximum peak temperatures for DSC curves at various heating rates were used to determine the activation energy (Ea) of the hydroxysodalite formation. With magnesium oxide and cobalt oxide, the formation process was found to be exothermic while it was endothermic with iron oxide.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 149 ◽  
Author(s):  
Anastasiya Toenjes ◽  
Heike Sonnenberg ◽  
Christina Plump ◽  
Rolf Drechsler ◽  
Axel von Hehl

A novel method for evolutionary material development by using high-throughput processing is established. For the purpose of this high-throughput approach, spherical micro samples are used, which have to be characterized, up-scaled to macro level and valued. For the evaluation of the microstructural state of the micro samples and the associated micro-properties, fast characterization methods based on physical testing methods such as calorimetry and universal microhardness measurements are developed. Those measurements result in so-called descriptors. The increase in throughput during calorimetric characterization using differential scanning calorimetry is achieved by accelerating the heating rate. Consequently, descriptors are basically measured in a non-equilibrium state. The maximum heating rate is limited by the possibility to infer the microstructural state from the calorimetric results. The substantial quality of the measured descriptors for micro samples has to be quantified and analyzed depending on the heating rate. In this work, the first results of the measurements of calorimetric descriptors with increased heating rates for 100Cr6 will be presented and discussed. The results of low and high heating rates will be compared and analyzed using additional microhardness measurements. Furthermore, the validation of the method regarding the suitability for the evolutionary material development includes up-scaling to macro level and therefore different sample masses will be investigated using micro and macro samples during calorimetry.


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1163 ◽  
Author(s):  
Walid Hikal ◽  
Brandon Weeks

Non-isothermal sublimation kinetics of low-volatile materials is more favorable over isothermal data when time is a crucial factor to be considered, especially in the subject of detecting explosives. In this article, we report on the in-situ measurements of the sublimation activation energy for 2,4,6-trinitrotoluene (TNT) continuous nanofilms in air using rising-temperature UV-Vis absorbance spectroscopy at different heating rates. The TNT films were prepared by the spin coating deposition technique. For the first time, the most widely used procedure to determine sublimation rates using thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC) was followed in this work using UV-Vis absorbance spectroscopy. The sublimation kinetics were analyzed using three well-established calculating techniques. The non-isothermal based activation energy values using the Ozawa, Flynn–Wall, and Kissinger models were 105.9 ± 1.4 kJ mol−1, 102.1 ± 2.7 kJ mol−1, and 105.8 ± 1.6 kJ mol−1, respectively. The calculated activation energy agreed well with our previously reported isothermally-measured value for TNT nanofilms using UV-Vis absorbance spectroscopy. The results show that the well-established non-isothermal analytical techniques can be successfully applied at a nanoscale to determine sublimation kinetics using absorbance spectroscopy.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 968 ◽  
Author(s):  
Abdenacer Benhammada ◽  
Djalal Trache ◽  
Mohamed Kesraoui ◽  
Salim Chelouche

In this study, carbon mesospheres (CMS) and iron oxide nanoparticles decorated on carbon mesospheres (Fe2O3-CMS) were effectively synthesized by a direct and simple hydrothermal approach. α-Fe2O3 nanoparticles have been successfully dispersed in situ on a CMS surface. The nanoparticles obtained have been characterized by employing different analytical techniques encompassing Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The produced carbon mesospheres, mostly spherical in shape, exhibited an average size of 334.5 nm, whereas that of Fe2O3 supported on CMS is at around 80 nm. The catalytic effect of the nanocatalyst on the thermal behavior of cellulose nitrate (NC) was investigated by utilizing differential scanning calorimetry (DSC). The determination of kinetic parameters has been carried out using four isoconversional kinetic methods based on DSC data obtained at various heating rates. It is demonstrated that Fe2O3-CMS have a minor influence on the decomposition temperature of NC, while a noticeable diminution of the activation energy is acquired. In contrast, pure CMS have a slight stabilizing effect with an increase of apparent activation energy. Furthermore, the decomposition reaction mechanism of NC is affected by the introduction of the nano-catalyst. Lastly, we can infer that Fe2O3-CMS may be securely employed as an effective catalyst for the thermal decomposition of NC.


2013 ◽  
Vol 712-715 ◽  
pp. 34-37
Author(s):  
Fang Zhang

A modified model describing the austenite reaction was developed that took into account the effect of heating rate. The model considered the variation of activation energy during non-isothermal heating and one set of model parameter was adequate to predict the formation of austenite. To verify the theoretical model, the process of austenite formation during continuous heating in Cr5 roller steel with pearlite and ferrite mixed initial microstructure was analyzed by dilatation experiment. The results show that a strong logarithmic relationship between apparent activation energy and heating rate. Experimental kinetic transformations as well as critical temperatures of austenite reaction are in good agreement with the calculations. The model can be used to describe the transformation kinetics at an intermediate heating rate.


2015 ◽  
Vol 60 (2) ◽  
pp. 1357-1359 ◽  
Author(s):  
Y. Hongbo ◽  
C. Meiling ◽  
W. Xu ◽  
G. Hong

Abstract The thermal decomposition of magnesium-aluminum layered double hydroxides (LDHs) was investigated by thermogravimetry analysis and differential scanning calorimetry (DSC) methods in argon environment. The influence of heating rates (including 2.5, 5, 10, 15 and 20K/min) on the thermal behavior of LDHs was revealed. By the methods of Kissinger and Flynn-Wall-Ozawa, the thermal kinetic parameters of activation energy and pre-exponential factor for the exothermic processes under non-isothermal conditions were calculated using the analysis of corresponding DSC curves.


Sign in / Sign up

Export Citation Format

Share Document