Research Based on Simulink of Hearth Negative Pressure Control System

2012 ◽  
Vol 424-425 ◽  
pp. 962-965
Author(s):  
Le Peng Song ◽  
Huan Huan Chen

Aiming at the furnace control system present situation of complex working conditions are not easy to be understood, this paper hearth negative pressure control system for detailed analysis; Combining the identification system known model and combining with matlab for stability analysis; Set in simulink negative pressure system control model. Choose PI and dynamic feed-forward control method to realize control and realize the dynamic interference effectively suppress, attain better control effect

2013 ◽  
Vol 310 ◽  
pp. 510-513
Author(s):  
Xiao Song He

The furnace control system of complexity working conditions is not easy to be understood, carried out a detailed analysis of this article furnace negative pressure control system, the recognition system combining known model; Combining the identification system known model and combining with matlab for stability analysis; Set in simulink negative pressure system control model. Choose adaptive fuzzy control method to realize control and realize the dynamic interference effectively suppress, attain better control effect.


2012 ◽  
Vol 462 ◽  
pp. 732-737
Author(s):  
Yi Heng Zhou ◽  
Long Yue Yang ◽  
Hai Lin Pu ◽  
Zi Yu Zhao ◽  
Fei Liu ◽  
...  

Industrial boiler steam pressure is an important measure of boiler normal operation. Since there is delay and inertial part, single-loop PID control is difficult to achieve good dynamic characteristics. By analyzing the characteristics of the steam pressure controlled object, this paper presents a fuzzy adaptive PID control based on the cascade control system. Finally, in order to analyze the effect of the control system, mathematical model was constructed by MATLAB simulation to compare fuzzy adaptive PID cascade control with conventional PID control. The results prove that the former has a good control effect.


2012 ◽  
Vol 588-589 ◽  
pp. 1503-1506
Author(s):  
Fang Ding ◽  
Tao Ma

This Temperature control system of aircraft cabin is a complex system with nonlinear, time-varying, model inaccurate and work environment uncertain. According to the system control requirements, the fuzzy controller with the characteristic of fast response speed, good stability and strong resistance to interference is used in the study. The system error is adjusted constantly by using fuzzy control algorithm and simulation study is conducted in the software Matlab. The results are showed that control effect of control method used in this study is better than the traditional PID control method, and dynamic performance, steady state accuracy and robustness of system is effectively improved.


2013 ◽  
Vol 291-294 ◽  
pp. 2416-2423 ◽  
Author(s):  
Guo Duo Zhang ◽  
Xu Hong Yang ◽  
Dong Qing Lu ◽  
Yong Xiao Liu

The pressurizer is an important device in nuclear reactor system, and the traditional PID regulator is usually used to control pressure system of pressurizer in modern reactors. However, it is difficult to get precise parameters of traditional PID controller, and the PID control method is relied on the precise mathematical model badly. And the response of PID controller is often shown by the large amount of overshoot and long setting time which are not the desired results. For such a large inertia and complex time-varying control system, the tradition PID controller can not obtain the satisfy control results. A controller based on BP neural network in this paper has a simple structure, and the parameters of PID controller can be tuned on-line by the neural network self-learning characteristics. The computer simulation experiment demonstrates that the BP neural network PID controller performs very well when compared with the tradition PID regulator in minimal overshoot and more quick response.


2021 ◽  
Author(s):  
Qiandiao Wei ◽  
He Xu ◽  
Siqing Chen ◽  
Weiwang Fan

Abstract Soft robots driven by pressurized fluid have recently been attracted more attention and achieved a variety of innovative applications in bionics, medical surgery, rehabilitation, search, and rescue system. And they have been demonstrated to be able to perform many different tasks, especially in some conditions of demand a high degree of compliance. Generally, they consisted of multiple actuate channels that require independent works. Consequently, a mass of pressure regulators and input pipelines are demanded, which will increase the complexity of the control system. To solve this problem, we propose a new pressure control method inspired by the control bus of electronic interface technology in this paper. An addressable pressure control bus system based on band-pass valve (BPV) and square wave of pressure (control signal) was designed. It consisted of a pressure supply source and an addressing signal, they are controled by two regulators, respectively. One of the pressure pipelines serves as the control bus to transmit the control pressure signal, which plays an addressing signal role in the system. The other serves as the pressure supply source of the multi-channel actuators. The BPV can be set to different opening pressure bands to realize the setting of diverse outputs address codes on the bus. This method discovered the work mode of double-input multi-output, which will get rids of the traditional control method of single-input single-output. In this paper, we designed the BPV and tested its function. To demonstrate the feasibility of this method proposed, a control system with two output ports was established. The result has shown that the output port can be selected by the pressure square wave signal, which realizes the function of single input multiple outputs. It reduces the complexity of the control strategy of the fluid control system.


Author(s):  
Xiaoyan Wu ◽  
Shu Wang ◽  
Xinnan Wang ◽  
Guogeng He

In recent years, the research and development of 3D bioprinting device for artificial blood vessels has attracted great attention of researchers. In this paper, the research object is the control system of 3D bioprinting device for artificial blood vessel and the four-channel air pressure cooperative control technology for 3D bioprinting device double nozzles printing is mainly studied. Through the scheme design, working principle innovation, hardware selection and air pressure output calibration experiment of four-way air pressure cooperative control system, the hardware platform of 3D bioprinting device air pressure control system is built. Then, by using the embedded TwinCAT NC PTP software platform based on EtherCAT Ethernet bus protocol, the four-channel air pressure cooperative control is programmed and field experiments are carried out, which realizes the printing process of uniform liquid output and good continuity, and meets the requirements of 3D bioprinting for printing continuity and forming quality. The study of four-channel air pressure cooperative control system in this course is a worthy of application and promotion control method.


2012 ◽  
Vol 472-475 ◽  
pp. 2548-2553 ◽  
Author(s):  
Xing Xing Li ◽  
Qing Guo ◽  
Lu Lu Zhang ◽  
Hong Zhou ◽  
Xiang Gang Zhang

On basis of the introduction for the composition of carried-load assistance system and the control mechanism of hydraulic pressure valve for lower extremity exoskeleton, the position control loop is built. The control system is designed by frequency domain method using the PID parameters combined with lead correction network. Simulation results show that the control method can servo the angle of knee joint as human’s natural walk as well as the harmonious of man-machine moment. According to performance test of hydraulic pressure control system, the flow and pressure in piston is analyzed considering different load, the pressure of oil box and movable mode. Test results show that hydraulic pressure valve control system can realize efficiently slow walk carried 30 kilogram load, up and down stairs.


2013 ◽  
Vol 718-720 ◽  
pp. 1215-1220
Author(s):  
Guo Duo Zhang ◽  
Xu Hong Yang ◽  
Si Yu Qiao ◽  
Yu Jun Wu

It is of vital importance for the pressurizer to maintain the pressure of primary coolant because the sharp change of coolant pressure has a direct impact on the security of reactor. The study of pressurizers pressure control method is highly important and meaningful. This paper presents the researching and designing on pressure control system of a pressurizer implemented in a nuclear power plant. Both the present situation of the nuclear power and some relevant background have been briefly introduced. Proceeding on the records of simulation, we succeed in establishing the applied modeling of pressurizer and further propose the PID control technology working as control algorithm. The best set of controller parameters are chosen through comparing the results including regulation time, overshoot suppression and stability. On the base of such control method, we attempt to add neural network control technology to achieve further improvement, which turns out available and satisfying.


2012 ◽  
Vol 605-607 ◽  
pp. 1074-1079
Author(s):  
Yan Wu Wen ◽  
Xin Chun Lu ◽  
Hui Zhang ◽  
Kai Zhou ◽  
Pei Qing Ye

In the process of very large scale integrated circuit (VLSI) manufacturing, Chemical Mechanical Polishing (CMP) technique is one of the most effective wafer global planarization techniques. The polishing quality depends not only on the slurry and polishing head structure, but also on accurately wafer polishing pressure control. However, the polishing pressure accurately control depends on a generalized pressure control system of the polishing head and multi-zones pneumatic pressure system. As the system has time-varying, nonlinear and coupling characters, it is difficult to apply theoretical modeling method for obtaining the accurate mathematical model. Therefore, this paper presents a method based on subsubmodel identification to establish the precise mathematical model of the pressure control system. The experimental results show that the method is feasible, practical and accurate.


Sign in / Sign up

Export Citation Format

Share Document