Projectile Impact Behavior of Z-Fiber Reinforced Laminar Composites

2012 ◽  
Vol 441 ◽  
pp. 717-725 ◽  
Author(s):  
B. S. Nashed ◽  
J.M. Rice ◽  
Yong K. Kim

The bending toughness, strength retention, resistance to damage and bending stiffness of glass fiber mat, laminar composites under high strain rate impact loading conditions was studied. One of the main disadvantages of laminar composite materials is their poor interlaminar shear strength. Recent work has demonstrated a method of Z-direction reinforcement of these composites using electrostatic flocking techniques improve delamination resistance and fracture toughness without degrading the composites tensile strength or other in-plane properties when loaded quasi-statically. The Z-direction reinforcement is accomplished by electrostatically flocking short fibers perpendicular to and between the composite ply layers. In this study, composite samples were prepared using the flocking method in two fabrication modes by the; so-called Z-Axis wet and Z-Axis dry procedures. In this work, Z-direction reinforced composite panels (including a non reinforced control) that were previously projectile impact damaged were tested using established mechanical testing procedures. Damage areas were quantified and compared using image processing techniques. Three point bending tests were also conducted on these projectile impact damaged panels to determine and compare their bending toughness, strength retention and modulus. The results show that Z-Axis reinforcement by the flocking technique improves the overall mechanical strength and stiffness properties of glass fiber mat laminar composites. For example, Z-Axis reinforced projectile damaged and not damaged glass fiber mat composite laminates are found to have flexural strengths 9% to 15% higher and a flexural modulus (stiffness) 22% to 26% higher than comparable (not Z-Axis flock reinforced) glass fiber mat samples.

2015 ◽  
Vol 76 (3) ◽  
Author(s):  
Norazean Shaari ◽  
Aidah Jumahat ◽  
M. Khafiz M. Razif

In this paper, the impact behavior of Kevlar/glass fiber hybrid composite laminates was investigated by performing the drop weight impact test (ASTM D7136). Composite laminates were fabricated using vacuum bagging process with an epoxy matrix reinforced with twill Kevlar woven fiber and plain glass woven fiber. Four different types of composite laminates with different ratios of Kevlar to glass fiber (0:100, 20:80, 50:50 and 100:0) were manufactured. The effect of Kevlar/glass fiber content on the impact damage behavior was studied at 43J nominal impact energy. Results indicated that hybridization of Kevlar fiber to glass fiber improved the load carrying capability, energy absorbed and damage degree of composite laminates with a slight reduction in deflection. These results were further supported through the damage pattern analysis, depth of penetration and X-ray evaluation tests. Based on literature work, studies that have been done to investigate the impact behaviour of woven Kevlar/glass fiber hybrid composite laminates are very limited. Therefore, this research concentrates on the effect of Kevlar on the impact resistance properties of woven glass fibre reinforced polymer composites.


2011 ◽  
Vol 46 (9) ◽  
pp. 1067-1078 ◽  
Author(s):  
Mateusz Koziol

This article presents the results of interlaminar shear and flexural tests of stitched polyester glass fiber laminates in dependence on stitch density and main geometric stitching parameters: stitch length and stitch spacing. Purpose of the study is to work out guidelines and indications for manufacturers of composite laminates who use or who plan to use stitching technique. It was found that stitching significantly improves interlaminar shear strength which increases with stitch density. However, stitching causes deterioration of in-plane flexural properties – the deterioration progresses when stitch density increases. Obtained results indicate that it is better to achieve increase in stitch density (resulting in improvement of interlaminar shear strength) by reduction of stitch length than by reduction of stitch spacing. Stitched laminate shows higher flexural strength and flexural modulus when bent into direction parallel to the stitch lines than when bent into the transverse direction. The results obtained within the study and their approximation constants may be a base for a new theoretical model simulating behavior of stitched laminate during static bending and enabling prediction of its mechanical performance.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7412
Author(s):  
Mohammed Y. Abdellah ◽  
Mohamed K. Hassan ◽  
Ahmed F. Mohamed ◽  
Ahmed H. Backar

In this paper, the mechanical properties of fiber-reinforced epoxy laminates are experimentally tested. The relaxation behavior of carbon and glass fiber composite laminates is investigated at room temperature. In addition, the impact strength under drop-weight loading is measured. The hand lay-up technique is used to fabricate composite laminates with woven 8-ply carbon and glass fiber reinforced epoxy. Tensile tests, cyclic relaxation tests and drop weight impacts are carried out on the carbon and glass fiber-reinforced epoxy laminates. The surface release energy GIC and the related fracture toughness KIC are important characteristic properties and are therefore measured experimentally using a standard test on centre-cracked specimens. The results show that carbon fiber-reinforced epoxy laminates with high tensile strength give high cyclic relaxation performance, better than the specimens with glass fiber composite laminates. This is due to the higher strength and stiffness of carbon fiber-reinforced epoxy with 600 MPa compared to glass fiber-reinforced epoxy with 200 MPa. While glass fibers show better impact behavior than carbon fibers at impact energies between 1.9 and 2.7 J, this is due to the large amount of epoxy resin in the case of glass fiber composite laminates, while the impact behavior is different at impact energies between 2.7 and 3.4 J. The fracture toughness KIC is measured to be 192 and 31 MPa √m and the surface energy GIC is measured to be 540.6 and 31.1 kJ/m2 for carbon and glass fiber-reinforced epoxy laminates, respectively.


MRS Advances ◽  
2016 ◽  
Vol 1 (19) ◽  
pp. 1339-1344 ◽  
Author(s):  
Yan Li ◽  
Han Zhang ◽  
Ton Peijs ◽  
Emiliano Bilotti

ABSTRACTThree different methods are evaluated for the introduction of graphene nanoplatelets (GNP) in hierarchical carbon- or glass fiber reinforced plastics. They involve; (1) direct infusion of GNP filled epoxy resin, (2) spray coating of GNP on fiber preforms and (3) the use of dissolvable thermoplastic interleaf carrier films. Direct infusion of GNP filled resin is the easiest method to deliver GNP into composite laminates but may lead to viscosity and filtration issues. Automated spray coating was set up to manufacture GNP modified carbon- or glass fiber fabrics, while graphene filled phenoxy interleaf films were manufactured by bar coating, both followed by resin infusion using neat epoxy resin to produce GNP modified epoxy laminates, without the disadvantages of GNP filled resins. No substantial difference in interlaminar shear strength (ILSS) for composites manufactured using the different delivery methods is found. However, the electrical conductivity of the GNP modified glass-fiber composites manufactured by spray coating of glass fabrics is two orders of magnitude higher than for laminates made by direct infusion of GNP modified resin.


2015 ◽  
Vol 76 (9) ◽  
Author(s):  
Norazean Shaari ◽  
Aidah Jumahat ◽  
Shahrul Azam Abdullah ◽  
Ahmad Zariff Hadderi

Hybrid laminates consisting of woven Kevlar/glass fiber composite plies were studied in terms of their residual tensile strength, stiffness and fracture surface.  Residual tensile strength and stiffness were determined from the open hole tension test according to ASTM D5766. The laminates of Kevlar fiber reinforced polymer (KFRP), glass fiber reinforced polymer (GFRP) and hybrid of Kevlar-glass fiber reinforced polymer (KGFRP) were fabricated using a vacuum bagging process. Three different ratios of Kevlar to glass fiber plies were prepared in this study which were 20:80, 50:50, and 80:20. Results showed that hybrid laminate consisting of 80:20 Kevlar to glass fiber plies, produced higher residual tensile strength and stiffness when compared to the other hybrid system. Furthermore, strength and stiffness of hole specimens were reduced within 50-63% when compared to unhole specimens due to existence of the hole. In addition, the effect of adding nanosilica to the hybrid system was also studied. 5 wt% of nanosilica was added to the hybrid composite laminates and results showed that higher tensile strength and stiffness was observed in GFRP and 20:80 KGFRP specimens, while the tensile strength was decreased with an increased number of Kevlar fiber. This research was conducted as there are limited number of studies that have been done on the tensile strength of woven hybrid composite laminates so far, especially on hybridization of Kevlar and glass fiber with consideration on the effect of hole and addition of nanofillers.


1996 ◽  
Vol 8 (4) ◽  
pp. 491-505 ◽  
Author(s):  
T H Hou ◽  
S P Wilkinson ◽  
N J Johnston ◽  
R H Pater ◽  
T L Schneiderk

LARC™-RP46 resin system is a PMR type polyimide and is prepared by replacing methylenedianiline in the PMR-15 composition with 3,4′-oxydianiline. This resin system retains the same processing characteristics as PMR-15 but also offers enhanced fracture toughness. Rheological measurements were conducted on pre-imidized LARC™-RP46 moulding powder subjected to various ramp and hold temperature schemes. Adequate flow properties were found with theoretical (formulated) molecular weight 6 ≤1500 g mol−1. Critical transition temperatures for optimizing the process cycle were identified. They included the resin softening point, the imidization reaction peak, the isomerization reaction peak and the gelation point. Utilizing this information, 1.72 × 10 6 Pa (250 psi) cure cycles were designed for B-staged (dry) and unstaged (wet) prepregs. Composite laminates were fabricated which exhibited excellent consolidation and a void content below 0.1–0.2% as measured by image analysis. IM7/LARC™-RP46 exhibited higher composite mechanical properties than IM7/PMR-15. Short-beam shear strength, flexural strength and flexural modulus were measured at room temperature, 93, 150 and 177 °C. Composite engineering properties were also obtained including longitudinal tension, logitudinal compression, interlaminar shear, short block compression, open hole compression (OHC) and compression strength after impact (CAI). Excellent longitudinal tensile and compressive strengths were obtained and the CAI strength was 40% higher than that for PMR-15. Over 80% retention of all RT strengths were noted at 177 °C.


2020 ◽  
Vol 9 (1) ◽  
pp. 1170-1182
Author(s):  
Muhammad Razlan Zakaria ◽  
Hazizan Md Akil ◽  
Mohd Firdaus Omar ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Aslina Anjang Ab Rahman ◽  
...  

AbstractThe electrospray deposition method was used to deposit carbon nanotubes (CNT) onto the surfaces of woven carbon fiber (CF) to produce woven hybrid carbon fiber–carbon nanotubes (CF–CNT). Extreme high-resolution field emission scanning electron microscopy (XHR-FESEM), X-ray diffraction (XRD), Raman spectroscopy and Fourier transform infrared spectroscopy (FT-IR) were used to analyze the woven hybrid CF–CNT. The results demonstrated that CNT was successfully and homogenously distributed on the woven CF surface. Woven hybrid CF–CNT epoxy composite laminates were then prepared and compared with woven CF epoxy composite laminates in terms of their flexural and dielectric properties. The results indicated that the flexural strength, flexural modulus and dielectric constant of the woven hybrid CF–CNT epoxy composite laminates were improved up to 19, 27 and 25%, respectively, compared with the woven CF epoxy composite laminates.


Sign in / Sign up

Export Citation Format

Share Document