The Grouting Bored Pile Perfusing Pile Bearing Capacity after Effect Factors of the Finite Element Analysis

2012 ◽  
Vol 461 ◽  
pp. 351-354
Author(s):  
Shao He Li ◽  
Qun Xian Lin

This article take the Zhejiang some project engineering geology condition as a background, Through comparative analysis with single pile load, determine the model parameters of ANSYS finite element, The ANSYS finite element model of single pile, Respectively on the Grouting pile and Grouting for grouting of pile modulus change and Grouting in body size and changes of modulus of pile-end soils and a series of comparative analysis of the situation and analysis on bearing capacity of bored pile tip Grouting influence factors and of the main causes, draw some useful conclusions.

2020 ◽  
pp. 136943322096527
Author(s):  
Longji Dang ◽  
Rui Pang ◽  
Rui Liu ◽  
Hongmei Ni ◽  
Shuting Liang

This paper aims to investigate the seismic performance of hollow floor interior slab-column connection (HFISC). In this new connection system, several tube fillers are placed in slab to form hollow concrete. Moreover, locally solid zone, shear components, and hidden beam around the connections are installed to improve the bearing capacity and ductility of specimens. Three slab-column connections with different shear components were tested under cyclic loading and every specimen was constructed with parallel tube fillers in the north direction and orthogonal tube fillers in the south direction. The seismic behavior of specimens was evaluated according to the hysteretic response, skeleton curve, ductility, stiffness degradation, and energy dissipation. A finite element model was then developed and validated by a comparison with the experimental results. Based on experimental results and finite element analysis results, the relative effects of the hollow ratio of slab, the ratio of longitudinal reinforcement, the shear area of bent-up steel bars, and the arm length of welding section steel cross bridging were elucidated through parametric studies. This new slab-column connection showed better plastic deformation capacity while the bearing capacity was kept. Specimens with parallel tube fillers showed better seismic behavior than those of specimens with orthogonal tube fillers.


2014 ◽  
Vol 578-579 ◽  
pp. 278-281
Author(s):  
Pi Yuan Xu ◽  
Qian Chen ◽  
Ya Feng Xu

In this paper, in order to understand fully the development of failure mechanism, bearing capacity and seismic performance of the steel H-beams and composite concrete filled steel tubular (CFST) column joints strengthened by outside strengthening ring, in the space zone the effects of changing the axial compression ratio is investigated. A 3D joint finite element model is built up by finite element software ABAQUS, the elastic-plastic finite element analysis is carried through numerical modeling process. The analysis results showed that low axial compression ratio has a little influence on the bearing capacity; with the increase of axial pressure the bearing capacity will decrease in a high axial compression ratio, moreover the failure pattern of joint changes from beam end to column end. The ductility of the specimens is decreased by raising axial compression ratio.


2014 ◽  
Vol 665 ◽  
pp. 196-202
Author(s):  
Yi Qing Guo ◽  
Ping Zhou Cao

In order to study the performance of lightweight energy-saving composite floor, the finite element models of composite floor were established, which was based on the composite floor specimens test research. The finite element models were verified rationally and correctly in the paper, through compared with the composite floor test results. The finite element model can be used to analyze the load-bearing capacity of composite floor. Various influencing factors of composite floor with simply supported end were analyzed, such as the span of self-tapping screw, the diameter of self-tapping screw, the strength of thin panel and the elastic modulus of thin panel, etc. The results show that the load-bearing capacity of composite floor increases with the increase of the number of self-tapping screw, the diameter of self-tapping screw, the strength of thin panel and the elastic modulus of thin panel, etc. The load-bearing capacity calculate formula of composite floor was proposed.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
GuoQi Xing ◽  
ChangJiang Liu ◽  
ShanShan Li ◽  
Wei Xuan

In this paper, monotonic horizontal loading tests were carried out to study the bearing capacity of the cone-shaped foundation in marine fine sand. With load-controlled methods, the horizontal load was applied to the rod of cone-shaped foundation at loading eccentricity ratios of 5.0, 6.0, and 7.0. In addition, theoretical analysis was used to investigate the horizontal ultimate bearing capacity, and finite element analysis was also used in this paper to investigate the influence factors of the bearing capacity of cone-shaped foundation. Based on the theoretical analysis, the formula for horizontal ultimate bearing capacity was deduced. Test results show that, at the same loading eccentricity, cone-shaped foundation can provide higher H-M bearing capacity as well as lower lateral deflection compared to regular circular foundation for wind turbines. In addition, the deflection-hardening behavior of load-deflection curve for cone-shaped foundation is also observed. Numerical analysis results show that the H-M bearing capacity of the cone-shaped foundation increases with increasing aspect ratio and buried depth, however, and decreases with increasing loading eccentricity. Based on the results from finite element analyses, several equations to calculate the maximum moment bearing capacities are put forward, which take the aspect ratio, loading eccentricity, and embedded depth into account.


2010 ◽  
Vol 163-167 ◽  
pp. 670-675
Author(s):  
Jiang Tao Yu ◽  
Ke Quan Yu ◽  
Bo Tang

Four groups (12 in total) of welded hollow spherical joints with ribbed stiffener were tested under uniaxial loads in this paper. With the adoption of elasto-plastic model and consideration of geometric and material nonlinearity, the whole loading process of the specimens was simulated by ABAQUS. Through combining the test data and computing results, two recommendations used to quantitatively determine the ultimate failure load of spherical joint in test are proposed. The relationships between bearing capacity and various influence factors, which include the thickness and diameter of hollow sphere, diameter of steel tube are analyzed and illustrated at the end of this paper.


2011 ◽  
Vol 255-260 ◽  
pp. 45-48 ◽  
Author(s):  
Ya Feng Xu ◽  
Xin Zhao ◽  
Yi Fu

Based on experimental research, the bearing performance of the new column (steel tube-reinforced concrete composite columns combination strengthened with angle steel and CFRP) has been studied in detail by finite element method. A finite element model is established based on a series of assumption. The load-displacement curves are obtained. The influence of steel ratio and thickness of CFRP layers to the bearing capacity is analyzed too. The result shows that both the steel ratio and the thickness of CFRP layers have great contribution to the axial load capacity. The finite element analysis results and theoretical analysis which are in good agreement show that simulation results are generally right.


2021 ◽  
Vol 11 (24) ◽  
pp. 11645
Author(s):  
Anton Chepurnenko ◽  
Batyr Yazyev ◽  
Besarion Meskhi ◽  
Alexey Beskopylny ◽  
Kazbek Khashkhozhev ◽  
...  

Concrete-filled steel tubular (CFST) columns are widely used in construction due to effective resistance to compression and bending joint action. However, currently, there is no generally accepted effective calculation method considering both nonlinearities of the materials and lateral compression. The article proposes the finite element analysis method of concrete-filled steel tubular columns in a physically nonlinear formulation by reducing a three-dimensional problem to a two-dimensional one based on the hypothesis of plane sections. The equations of Geniev’s concrete theory of plasticity are used as relations establishing the relationship between stresses and strains. The technique was tested by comparing the solution with the calculation in a three-dimensional formulation in the LIRA-SAPR software package and with the experimental data of A.L. Krishan and A.I. Sagadatov. It has been established that the effective area of operation of circular-section columns are small eccentricities of the longitudinal force. The proposed approach can be applied to analyzing the stress–strain state and bearing capacity of pipe-concrete columns of arbitrary cross-sections. There are no restrictions on the composition of concrete, and the shell material can be steel and fiberglass.


2015 ◽  
Vol 9 (1) ◽  
pp. 495-497 ◽  
Author(s):  
Yongmei Qian ◽  
Xihui Wang ◽  
Ruozhu Wang

In this paper, by ANSYS software it is built that a computer simulation analyzing model according to the finite element method, which is analyzed that the failure mechanism of the main pile and the soil around the bearing expanded-plate of the Multi-Expanded-plates pile(the MEEP pile), it is qualitatively determined that the space between the bearing expanded-plates affect the bearing capacity of the single pile of the MEEP pile, and of which the lower limiting value is put forward, in order to provide the theoretical support to the actual design of the MEEP pile


Author(s):  
Sayed A. Nassar ◽  
Zhijun Wu ◽  
Xianjie Yang

A three dimensional nonlinear finite element model is developed for achieving a uniform clamp load in gasketed bolted joints. The model is used for both multiple and single pass tightening patterns. Geometric nonlinearity of the gasket is taken into account and plastic model parameters are experimentally determined. The effect of the tightening pattern, gasket loading and unloading history, and the preload level is investigated. The validity of the FEA methodology is experimentally verified. This study helps improve the reliability of gasketed bolted joints by minimizing the bolt-to-bolt clamp load variation caused by elastic interaction among the various bolts in the joint during initial joint bolt-up.


Sign in / Sign up

Export Citation Format

Share Document