The Research and Development of a New Type of Metal Wire-Buckling Machine

2012 ◽  
Vol 490-495 ◽  
pp. 793-796
Author(s):  
Yue Hui Liu ◽  
Wen Xue Liu ◽  
Gen Li Shan

Designing of a new type of metal wire-buckling machine, introducing the overall structure, operational principle and control flow of the equipment. The machine can realize the feeding, straightening, cutting off, shaping, returning material procedures of the metal wire automatically, with features of high degree of automation, compact structure, good quality and high efficiency.

2012 ◽  
Vol 490-495 ◽  
pp. 594-597
Author(s):  
Cheng Qun Li ◽  
Liang Gao

This paper introduces a new type of automatic steel bundling machine for bundling process, which includes a pneumatic action process, mainly do some researches on the pneumatic control system. The system chooses PLC as the core control component, puts forward the hardware of control system and control flow. Eventually we have been designed the control program.


2003 ◽  
Vol 12 (01) ◽  
pp. 1-36 ◽  
Author(s):  
MARIE JOSÉ BLIN ◽  
JACQUES WAINER ◽  
CLAUDIA BAUZER MEDEIROS

This paper presents a new formalism for workflow process definition, which combines research in programming languages and in database systems. This formalism is based on creating a library of workflow building blocks, which can be progressively combined and nested to construct complex workflows. Workflows are specified declaratively, using a simple high level language, which allows the dynamic definition of exception handling and events, as well as dynamically overriding workflow definition. This ensures a high degree of flexibility in data and control flow specification, as well as in reuse of workflow specifications to construct other workflows. The resulting workflow execution environment is well suited to supporting cooperative work.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shuo Du ◽  
Zhe Liu ◽  
Chi Sun ◽  
Wei Zhu ◽  
Guangzhou Geng ◽  
...  

Abstract As an inherent characteristic of light, polarization plays important roles in information storage, display and even encryption. Metasurfaces, composed of specifically designed subwavelength units in a two-dimensional plane, offer a great convenience for polarization manipulation, yet improving their integrability and broadband fidelity remain significant challenges. Here, based on the combination of various subwavelength cross-nanofins (CNs), a new type of metasurface for multichannel hybrid polarization distribution in near-field is proposed. Sub-wavelength CN units with various waveplate (WP) functionalities, such as frequency-division multiplexing WP, half-WP and quarter-WP are implemented with high efficiency in broadband. High-resolution grayscale image encryption, multi-image storage and rapid polarization detection are demonstrated by encoding the WP pixels into single, double and four channels, respectively. All these applications possess good fidelity in an ultrabroad wavelength band from 1.2 to 1.9 µm, and the high degree of integrability, easy fabrication and multifunction make the CN-shaped WP pixels a promising candidate in optical device miniaturization, quantum applications and imaging technologies.


2019 ◽  
Vol 39 (1) ◽  
pp. 154-164 ◽  
Author(s):  
Junxia Jiang ◽  
Chen Bian ◽  
Yunbo Bi ◽  
Yinglin Ke

PurposeThe purpose of this paper is to design, analyze and optimize a new type of inner-side working head for automatic horizontal dual-machine cooperative drilling and riveting system. The inner-side working head is the key component of automatic drilling and riveting system, and it is a challenge to design an inner-side working head which must be stiffness and stable with a compact structure to realize its functions.Design/methodology/approachAccording to the assembly structure features of large aircraft panels and riveting process requirements, a new type of inner-side working head is designed for pressure riveting. The force condition of the inner-side working head during the riveting process is analyzed and the deformation model is established. Design optimization is performed based on genetic algorithm and finite element analysis. The optimized inner-side working head is tested with automatic horizontal dual-machine cooperative drilling and riveting system.FindingsThe deformation model provides the precision compensation basis for control system. Application test results show that the automatic drilling and riveting system can realize assembly of large aircraft panel with high efficiency and quality through the inner-side working head.Research limitations/implicationsThe inner-side working head has been used in aircraft panel assembly.Practical implicationsThe inner-side working head has been used in aircraft panel assembly.Originality/valueThis paper presents the design, analysis and optimization of a new type of inner-side working head which can realize automatic riveting for aircraft panel. The research will promote the automation of aircraft panel assembly.


2021 ◽  
Author(s):  
Chenggang Yuan ◽  
Andrew Plummer ◽  
Min Pan

Abstract Switched inertance hydraulic converters (SIHC) are new digital hydraulic devices which provide an alternative to conventional proportional or servo valve-controlled systems in hydraulic fluid power. SIHCs can adjust and control flow and pressure by means of using digital control signals that do not rely on throttling the flow and dissipation of power, and provide hydraulic systems with high-energy efficiency, good controllability, and insensitivity to contamination. A flow booster is one configuration of SIHCs which can deliver more flow than the supply flow. In this article, the loading effects of SIHCs are investigated by applying a time-varying load on the flow booster. A control system consisting of a PI controller and a switching frequency optimizer was designed to operate a flow booster at its optimal switching frequencies and switching ratios to maximize system efficiency when the load varies. Simulated results showed that the flow booster with the proposed controller has very good dynamic response and can be operated at an average efficiency of 70% with a time-varying load. Compared with only using a PI controller, the proposed controller can improve the overall efficiency by up to 20%. As time-varying loading conditions are commonly found in hydraulic applications, this work constitutes an important contribution to the design and development of high-efficiency SIHCs.


1972 ◽  
Vol 94 (4) ◽  
pp. 1171-1177 ◽  
Author(s):  
T. G. Lang

The S3 semisubmerged ship concept consists basically of two parallel torpedo-like hulls, submerged to a depth of about two diameters and attached to an above-water platform by means of four vertical struts. Horizontal fins and control surfaces attached to the hulls provide dynamic stability and permit full automatic control over pitch, heave, and roll. The anticipated advantages of the S3 over conventional ships are greatly improved seaworthiness, high-speed potential, large internal volume and deck area, controllability, and many aspects of its unusual hydrodynamic form. The S3 concept appears to be most applicable to small ships (100 to 15,000 tons) having missions associated with the use of sonar—the handling of aircraft, weapons, or submersibles—and for missions requiring a high degree of seaworthiness and stability.


2012 ◽  
Vol 510 ◽  
pp. 442-445
Author(s):  
Cheng Qun Li ◽  
Shi Yong Li ◽  
Liang Gao

This paper introduces a new type of automatic steel wire bundling machine for bundling process, which includes a hydraulic action process, mainly do some researches on the hydraulic control system. The system chooses PLC as the core control component, puts forward the hardware of control system and control flow. Eventually we have been designed the control program.


2019 ◽  
Vol 8 (4) ◽  
pp. 9538-9542

In vision of searching for the right Unmanned Aerial System (UAS) for a specific mission, there are multiple factors to be considered by the operator such as mission, endurance, type of payload and range of the telemetry and control. This research is focusing on extending control range of the UAS by using 4G-LTE network to enable beyond-line-of-sight flying for the commercial UAS. Major UAS such Global Hawk, Predator MQ-1 are able to fly thousands of kilometers by the use of satellite communication. However, the satellite communication annual license subscription can be very expensive. With this situation in mind, a new type of flight controller with 4G-LTE communication has been developed and tested. Throughout the research, blended-wing-body (BWB) Baseline B2S is used as the platform for technology demonstrator. Result from this analysis has proven that the proposed system is capable to control a UAS from as far as United Kingdom, with a latency less than 881 ms in average. The new added capability can potentially give the commercial UAS community a new horizon to be able to control their UAS from anywhere around the world with the availability of 4G-LTE connection


2020 ◽  
Vol 13 (4) ◽  
pp. 352-365
Author(s):  
Guangxin Wang ◽  
Lili Zhu ◽  
Peng Wang ◽  
Jia Deng

Background: Nutation drive is being extensively investigated due to its ability to achieve a high reduction ratio with a compact structure and the potential for low vibration, high efficiency and design flexibility. However, many problems including the difficulty to process the inner bevel gear, less number of teeth in engagement and not being suitable for high-power transmission have restricted its development. Objective: The purpose of this paper is to analyze the contact strength of a patent about a new nutation drive developed based on meshing between two face gears, which has the advantages of both face gear and nutation drive, including large transmission ratio, large coincidence, small size, compact structure and strong bearing capacity. Methods: Based on the meshing principle and basic structure of the nutation face gear drive, the contact strength of nutation face gear transmission is analyzed by the Hertz contact analysis method and FEM method. Results: The maximum stress values of nutation face gear teeth are compared by two methods, which verify the accuracy of Hertz contact analytical method in calculating the contact strength of nutation face gear teeth. Furthermore, nine groups of three-dimensional models for the nutation face gear drive with a transmission ratio of 52 and different cutter parameters are established. Conclusion: The study analyzes the contact stress of fixed and rotary face gears in meshing with planetary face gears, and obtains the distribution law of contact stress and the influence of the number of teeth and parameters of the cutter on the load-carrying capacity.


Sign in / Sign up

Export Citation Format

Share Document