Research on Flame Combustion Stability Based on Neural Network

2012 ◽  
Vol 516-517 ◽  
pp. 390-394
Author(s):  
Gui Zhi Bai ◽  
Li Hong Zhang ◽  
Shu Qian Chen

For the use of boiler flame image analysis to detect the boiler flame combustion stability, when the combustion affected by coal, peaking , improper operation or other effects, the flame appeared short pulsation. In general, the traditional detection methods based on gray scale variance can not avoid the impact of flame pulsation on account of the inaccuracy of the boiler combustion stability detection. This paper presents a flame combustion instability detection method based on neural network and selects multiple features which are directly related to the flame stability as neural network input vector. Experiments show that this method can fight off the tiny ripple influence caused by the impurities combustion or peak and simultaneously, greatly improve the detection accuracy and stability.

2013 ◽  
Vol 694-697 ◽  
pp. 1978-1982
Author(s):  
Shu Qian Chen ◽  
Yang Lie Fu

Researched on weft fiber cut problems of glass fiber, improved the efficiency of textile production. Glass fiber textile machine is a major producer machine of glass fiber cloth. Textile machines weft detection usually uses the contact type in production, requires that the weft maintains certain pressure to the sensor. Using this method will cause glass fiber weft bristling, and will produce glass fiber floating dust. Damage to the textile machine and has the harm to the human body health. Used video surveillance method to detection the weft, image recognition and speed directly affects the stability of the system. This paper presented a detection methods of glass fiber textiles weft fiber cut based on neural network-based, selected multiple features which were directly related to the image with the weft as neural network input vector, through repeated training samples to remove tiny ripple effects which were caused by weft textile jitter, overcome the traditional method detection accuracy was not high. Experimental results show that this method can effectively avoid the weft jitter, making accurate detection of the weft fiber cut, and achieved satisfactory results.


Author(s):  
Yan Wang ◽  
Weijie Zhang

Aiming at the problem of low detection accuracy of traditional power insulator fault detection methods, a power insulator fault detection method based on deep convolution neural network is designed. For the training of deep convolution neural network, the fault detection of power insulator based on deep convolution neural network is realized by anchor design, loss function design, candidate region selection mechanism establishment and sharing convolution features. The experimental results show that the fault detection method of power insulator based on deep convolution neural network is more accurate than the traditional method, and the detection time is less.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2136 ◽  
Author(s):  
Chaur-Heh Hsieh ◽  
Yan-Shuo Li ◽  
Bor-Jiunn Hwang ◽  
Ching-Hua Hsiao

The automatic detection of atrial fibrillation (AF) is crucial for its association with the risk of embolic stroke. Most of the existing AF detection methods usually convert 1D time-series electrocardiogram (ECG) signal into 2D spectrogram to train a complex AF detection system, which results in heavy training computation and high implementation cost. This paper proposes an AF detection method based on an end-to-end 1D convolutional neural network (CNN) architecture to raise the detection accuracy and reduce network complexity. By investigating the impact of major components of a convolutional block on detection accuracy and using grid search to obtain optimal hyperparameters of the CNN, we develop a simple, yet effective 1D CNN. Since the dataset provided by PhysioNet Challenge 2017 contains ECG recordings with different lengths, we also propose a length normalization algorithm to generate equal-length records to meet the requirement of CNN. Experimental results and analysis indicate that our method of 1D CNN achieves an average F1 score of 78.2%, which has better detection accuracy with lower network complexity, as compared with the existing deep learning-based methods.


2012 ◽  
Vol 572 ◽  
pp. 338-342 ◽  
Author(s):  
Zhi Guo Liang ◽  
Quan Yang ◽  
Ke Xu ◽  
Fei He ◽  
Xiao Chen Wang ◽  
...  

Structured light 3D measurement technology with its simple structure, non-contact measurement, fast measurement speed and other advantages, has been widely used. Steel plate surface quality detection is not confined to the two-dimensional feature of gray detection, and local topography measurement for surface quality of steel plate detection becomes increasingly important. In this paper, steel plate surface 3D detection method based on structured light and the factors affecting the measurement accuracy are analyzed. Several effective methods of improving 3D detection accuracy are put forward. Compared with the traditional structured light 3D detection methods, the detection accuracy of new methods is remarkably improved, thus possessing better application values.


2021 ◽  
Vol 233 ◽  
pp. 02012
Author(s):  
Shousheng Liu ◽  
Zhigang Gai ◽  
Xu Chai ◽  
Fengxiang Guo ◽  
Mei Zhang ◽  
...  

Bacterial colonies detecting and counting is tedious and time-consuming work. Fortunately CNN (convolutional neural network) detection methods are effective for target detection. The bacterial colonies are a kind of small targets, which have been a difficult problem in the field of target detection technology. This paper proposes a small target enhancement detection method based on double CNNs, which can not only improve the detection accuracy, but also maintain the detection speed similar to the general detection model. The detection method uses double CNNs. The first CNN uses SSD_MOBILENET_V1 network with both target positioning and target recognition functions. The candidate targets are screened out with a low confidence threshold, which can ensure no missing detection of small targets. The second CNN obtains candidate target regions according to the first round of detection, intercepts image sub-blocks one by one, uses the MOBILENET_V1 network to filter out targets with a higher confidence threshold, which can ensure good detection of small targets. Through the two-round enhancement detection method has been transplanted to the embedded platform NVIDIA Jetson AGX Xavier, the detection accuracy of small targets is significantly improved, and the target error detection rate and missed detection rate are reduced to less than 1%.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yubo Song ◽  
Yijin Geng ◽  
Junbo Wang ◽  
Shang Gao ◽  
Wei Shi

Since a growing number of malicious applications attempt to steal users’ private data by illegally invoking permissions, application stores have carried out many malware detection methods based on application permissions. However, most of them ignore specific permission combinations and application categories that affect the detection accuracy. The features they extracted are neither representative enough to distinguish benign and malicious applications. For these problems, an Android malware detection method based on permission sensitivity is proposed. First, for each kind of application categories, the permission features and permission combination features are extracted. The sensitive permission feature set corresponding to each category label is then obtained by the feature selection method based on permission sensitivity. In the following step, the permission call situation of the application to be detected is compared with the sensitive permission feature set, and the weight allocation method is used to quantify this information into numerical features. In the proposed method of malicious application detection, three machine-learning algorithms are selected to construct the classifier model and optimize the parameters. Compared with traditional methods, the proposed method consumed 60.94% less time while still achieving high accuracy of up to 92.17%.


Author(s):  
Jovin Angelico ◽  
Ken Ratri Retno Wardani

The computer ability to detect human being by computer vision is still being improved both in accuracy or computation time. In low-lighting condition, the detection accuracy is usually low. This research uses additional information, besides RGB channels, namely a depth map that shows objects’ distance relative to the camera. This research integrates Cascade Classifier (CC) to localize the potential object, the Convolutional Neural Network (CNN) technique to identify the human and nonhuman image, and the Kalman filter technique to track human movement. For training and testing purposes, there are two kinds of RGB-D datasets used with different points of view and lighting conditions. Both datasets have been selected to remove images which contain a lot of noises and occlusions so that during the training process it will be more directed. Using these integrated techniques, detection and tracking accuracy reach 77.7%. The impact of using Kalman filter increases computation efficiency by 41%.


2021 ◽  
Author(s):  
Chongyu Wang ◽  
Di Zhang ◽  
Yonghui Xie

Abstract The steam turbine rotor is still the main power generation equipment. Affected by the impact of new energy on the power grid, the steam turbine needs to participate in peak load regulation, which will make turbine rotor components more prone to failure. The rotor is an important equipment of a steam turbine. Unbalance and misalignment are the normal state of rotor failure. In recent years, more and more attention has been paid to the fault detection method based on deep learning, which takes rotating machinery as the object. However, there is a lack of research on actual steam turbine rotors. In this paper, a method of rotor unbalance and parallel misalignment fault detection based on residual network is proposed, which realizes the end-to-end fault detection of rotor. Meanwhile, the method is evaluated with numerical simulation data, and the multi task detection of rotor unbalance, parallel misalignment, unbalanced parallel misalignment coupling faults (coupling fault called in this paper) is realized. The influence of signal-to-noise ratio and the number of training samples on the detection performance of neural network is discussed. The detection accuracy of unbalanced position is 93.5%, that of parallel misalignment is 99.1%. The detection accuracy for unbalance and parallel misalignment is 89.1% and 99.1%, respectively. The method can realize the direct mapping between the unbalanced, parallel misalignment, coupling fault vibration signals and the fault detection results. The method has the ability to automatically extract fault features. It overcomes the shortcoming of traditional methods that rely on signal processing experience, and has the characteristics of high precision and strong robustness.


2020 ◽  
Vol 10 (14) ◽  
pp. 4720 ◽  
Author(s):  
Zhiqiang Teng ◽  
Shuai Teng ◽  
Jiqiao Zhang ◽  
Gongfa Chen ◽  
Fangsen Cui

The traditional methods of structural health monitoring (SHM) have obvious disadvantages such as being time-consuming, laborious and non-synchronizing, and so on. This paper presents a novel and efficient approach to detect structural damages from real-time vibration signals via a convolutional neural network (CNN). As vibration signals (acceleration) reflect the structural response to the changes of the structural state, hence, a CNN, as a classifier, can map vibration signals to the structural state and detect structural damages. As it is difficult to obtain enough damage samples in practical engineering, finite element analysis (FEA) provides an alternative solution to this problem. In this paper, training samples for the CNN are obtained using FEA of a steel frame, and the effectiveness of the proposed detection method is evaluated by inputting the experimental data into the CNN. The results indicate that, the detection accuracy of the CNN trained using FEA data reaches 94% for damages introduced in the numerical model and 90% for damages in the real steel frame. It is demonstrated that the CNN has an ideal detection effect for both single damage and multiple damages. The combination of FEA and experimental data provides enough training and testing samples for the CNN, which improves the practicability of the CNN-based detection method in engineering practice.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yaojun Hao ◽  
Fuzhi Zhang ◽  
Jian Wang ◽  
Qingshan Zhao ◽  
Jianfang Cao

Due to the openness of the recommender systems, the attackers are likely to inject a large number of fake profiles to bias the prediction of such systems. The traditional detection methods mainly rely on the artificial features, which are often extracted from one kind of user-generated information. In these methods, fine-grained interactions between users and items cannot be captured comprehensively, leading to the degradation of detection accuracy under various types of attacks. In this paper, we propose an ensemble detection method based on the automatic features extracted from multiple views. Firstly, to collaboratively discover the shilling profiles, the users’ behaviors are analyzed from multiple views including ratings, item popularity, and user-user graph. Secondly, based on the data preprocessed from multiple views, the stacked denoising autoencoders are used to automatically extract user features with different corruption rates. Moreover, the features extracted from multiple views are effectively combined based on principal component analysis. Finally, according to the features extracted with different corruption rates, the weak classifiers are generated and then integrated to detect attacks. The experimental results on the MovieLens, Netflix, and Amazon datasets indicate that the proposed method can effectively detect various attacks.


Sign in / Sign up

Export Citation Format

Share Document