The Synthesis and Application of Photoinitiators Chitosan-Graft-Acrylamide Polymer Flocculants

2012 ◽  
Vol 550-553 ◽  
pp. 845-848 ◽  
Author(s):  
Rong Xian Jia

Chitosan and acrylamide were used for graft reaction by photoinitiator, and flocculation performance of grafted product was also studied. In addition, the impact of the trigger system, reaction time and temperature on product performance were discussed in detail. Structure property of the product was characterized by infrared spectroscopy. It is found that the highest stem grafting rate of graft copolymer can reach 239.4 % using this process, and the specific viscosity of product can reach 820 ml/g. The flocculation test was done by coal slurry water, and its result shows that the light transmission rate of slime water is up to 98.7 %.

2013 ◽  
Vol 734-737 ◽  
pp. 1064-1067
Author(s):  
Lin Lin Zhang ◽  
Rong Chun Nie ◽  
Shuai Ma ◽  
Yin Yu Sun

Through the photoinitiation technology synthetizes anionic polyacrylamide (APAM), with the raw material of sodium acrylate (AANa) and acrylamide (AM). The results show that the best ratio of AANa-AM is 1:3, mass fraction of AM is 30%, pH value is 7.0, reaction temperature is 40°C, good intrinsic viscosity and solubility in APAM can be obtained.Meanwhile, IR characterization meets APAM characteristic groups using for application characterization of Qian ying zi slime water and the results show that the product can be seen from flocculation results of synthetic product on the coal slurry with the light transmission rate of 88.1%.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xi Huo ◽  
Jing Chen ◽  
Shigui Ruan

Abstract Background The COVID-19 outbreak in Wuhan started in December 2019 and was under control by the end of March 2020 with a total of 50,006 confirmed cases by the implementation of a series of nonpharmaceutical interventions (NPIs) including unprecedented lockdown of the city. This study analyzes the complete outbreak data from Wuhan, assesses the impact of these public health interventions, and estimates the asymptomatic, undetected and total cases for the COVID-19 outbreak in Wuhan. Methods By taking different stages of the outbreak into account, we developed a time-dependent compartmental model to describe the dynamics of disease transmission and case detection and reporting. Model coefficients were parameterized by using the reported cases and following key events and escalated control strategies. Then the model was used to calibrate the complete outbreak data by using the Monte Carlo Markov Chain (MCMC) method. Finally we used the model to estimate asymptomatic and undetected cases and approximate the overall antibody prevalence level. Results We found that the transmission rate between Jan 24 and Feb 1, 2020, was twice as large as that before the lockdown on Jan 23 and 67.6% (95% CI [0.584,0.759]) of detectable infections occurred during this period. Based on the reported estimates that around 20% of infections were asymptomatic and their transmission ability was about 70% of symptomatic ones, we estimated that there were about 14,448 asymptomatic and undetected cases (95% CI [12,364,23,254]), which yields an estimate of a total of 64,454 infected cases (95% CI [62,370,73,260]), and the overall antibody prevalence level in the population of Wuhan was 0.745% (95% CI [0.693%,0.814%]) by March 31, 2020. Conclusions We conclude that the control of the COVID-19 outbreak in Wuhan was achieved via the enforcement of a combination of multiple NPIs: the lockdown on Jan 23, the stay-at-home order on Feb 2, the massive isolation of all symptomatic individuals via newly constructed special shelter hospitals on Feb 6, and the large scale screening process on Feb 18. Our results indicate that the population in Wuhan is far away from establishing herd immunity and provide insights for other affected countries and regions in designing control strategies and planing vaccination programs.


Author(s):  
Bernd Brüggenjürgen ◽  
Hans-Peter Stricker ◽  
Lilian Krist ◽  
Miriam Ortiz ◽  
Thomas Reinhold ◽  
...  

Abstract Aim To use a Delphi-panel-based assessment of the effectiveness of different non-pharmaceutical interventions (NPI) in order to retrospectively approximate and to prospectively predict the SARS-CoV-2 pandemic progression via a SEIR model (susceptible, exposed, infectious, removed). Methods We applied an evidence-educated Delphi-panel approach to elicit the impact of NPIs on the SARS-CoV-2 transmission rate R0 in Germany. Effectiveness was defined as the product of efficacy and compliance. A discrete, deterministic SEIR model with time step of 1 day, a latency period of 1.8 days, duration of infectiousness of 5 days, and a share of the total population of 15% assumed to be protected by immunity was developed in order to estimate the impact of selected NPI measures on the course of the pandemic. The model was populated with the Delphi-panel results and varied in sensitivity analyses. Results Efficacy and compliance estimates for the three most effective NPIs were as follows: test and isolate 49% (efficacy)/78% (compliance), keeping distance 42%/74%, personal protection masks (cloth masks or other face masks) 33%/79%. Applying all NPI effectiveness estimates to the SEIR model resulted in a valid replication of reported occurrence of the German SARS-CoV-2 pandemic. A combination of four NPIs at consented compliance rates might curb the CoViD-19 pandemic. Conclusion Employing an evidence-educated Delphi-panel approach can support SARS-CoV-2 modelling. Future curbing scenarios require a combination of NPIs. A Delphi-panel-based NPI assessment and modelling might support public health policy decision making by informing sequence and number of needed public health measures.


Pharmacology ◽  
2021 ◽  
pp. 1-5
Author(s):  
David Naguib ◽  
Carolin Helten ◽  
Saif Zako ◽  
Philipp Mourikis ◽  
René M’Pembele ◽  
...  

Additional loading dose of acetylsalicylic acid (ASA) during percutaneous coronary interventions (PCIs) despite permanent oral ASA medication is frequently applicated. The impact on platelet reactivity and clinical events is not known. In this pilot study, we aimed to analyze high on-treatment platelet reactivity (HTPR) to aspirin in patients undergoing elective PCI. Platelet reactivity was measured using light-transmission aggregometry in 100 patients on permanent low-dose ASA medication undergoing elective PCI. Platelet reactivity measured by arachidonic acid-induced maximum of aggregation (MoA) in patients with versus without additional peri-procedural ASA loading (500 mg i.v.) was compared. HTPR was defined as MoA &#x3e;20% for ASA. Major adverse cerebro- and cardiovascular events (MACCEs) and bleeding events were evaluated during hospital course. HTPR rate was similar in both groups (HTPR to ASA: loading vs. control 6% vs. 16%, odds ratio [OR] = 0.33, 95% confidence interval [CI] 0.08–1.35, <i>p</i> = 0.12). In-hospital MACCEs were not different between groups (MACCE: loading vs. control: 0 vs. 0 patient, OR = 1.32, 95% CI 0.03–67.95, <i>p</i> = 0.89). Thrombolysis in myocardial infarction minimal bleedings were numerically higher in patients without ASA loading dose. In this pharmacodynamic pilot study, additional ASA loading did not reduce HTPR to ASA. Furthermore, ASA loading did not increase in-hospital MACCE and bleeding complications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wilfredo Angulo ◽  
José M. Ramírez ◽  
Dany De Cecchis ◽  
Juan Primera ◽  
Henry Pacheco ◽  
...  

AbstractCOVID-19 is a highly infectious disease that emerged in China at the end of 2019. The COVID-19 pandemic is the first known pandemic caused by a coronavirus, namely, the new and emerging SARS-CoV-2 coronavirus. In the present work, we present simulations of the initial outbreak of this new coronavirus using a modified transmission rate SEIR model that takes into account the impact of government actions and the perception of risk by individuals in reaction to the proportion of fatal cases. The parameters related to these effects were fitted to the number of infected cases in the 33 provinces of China. The data for Hubei Province, the probable site of origin of the current pandemic, were considered as a particular case for the simulation and showed that the theoretical model reproduces the behavior of the data, thus indicating the importance of combining government actions and individual risk perceptions when the proportion of fatal cases is greater than $$4\%$$ 4 % . The results show that the adjusted model reproduces the behavior of the data quite well for some provinces, suggesting that the spread of the disease differs when different actions are evaluated. The proposed model could help to predict outbreaks of viruses with a biological and molecular structure similar to that of SARS-CoV-2.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Abu Quwsar Ohi ◽  
M. F. Mridha ◽  
Muhammad Mostafa Monowar ◽  
Md. Abdul Hamid

AbstractPandemic defines the global outbreak of a disease having a high transmission rate. The impact of a pandemic situation can be lessened by restricting the movement of the mass. However, one of its concomitant circumstances is an economic crisis. In this article, we demonstrate what actions an agent (trained using reinforcement learning) may take in different possible scenarios of a pandemic depending on the spread of disease and economic factors. To train the agent, we design a virtual pandemic scenario closely related to the present COVID-19 crisis. Then, we apply reinforcement learning, a branch of artificial intelligence, that deals with how an individual (human/machine) should interact on an environment (real/virtual) to achieve the cherished goal. Finally, we demonstrate what optimal actions the agent perform to reduce the spread of disease while considering the economic factors. In our experiment, we let the agent find an optimal solution without providing any prior knowledge. After training, we observed that the agent places a long length lockdown to reduce the first surge of a disease. Furthermore, the agent places a combination of cyclic lockdowns and short length lockdowns to halt the resurgence of the disease. Analyzing the agent’s performed actions, we discover that the agent decides movement restrictions not only based on the number of the infectious population but also considering the reproduction rate of the disease. The estimation and policy of the agent may improve the human-strategy of placing lockdown so that an economic crisis may be avoided while mitigating an infectious disease.


2017 ◽  
Vol 39 (1) ◽  
Author(s):  
Mehtab Singh

AbstractOptical wireless communication (OWC) systems also known as Free space optics (FSO) are capable of providing high channel bandwidth, high data transmission rates, low power consumption, and high security. OWC links are being considered in different applications such as inter-satellite links, terrestrial links, and inter-aircraft communication links. This paper investigates the impact of different system parameters such as transmission power level, operating wavelength, transmitter pointing error angle, bit transmission rate, atmospheric attenuation, antenna aperture diameter, geometric losses, the responsivity of the photodetector, and link range on the performance of inter-aircraft optical wireless communication link.


2021 ◽  
pp. 63-68
Author(s):  
Daniil S. Shiryaev ◽  
Olga A. Kozyreva ◽  
Ivan S. Polukhin ◽  
Sergey A. Shcheglov ◽  
Svetlana A. Degtiareva ◽  
...  

The system of intellectual lighting data transmission via visible light is developed and manufactured. Spectral characteristics of a downlink which uses the red crystal of a RGBW light emitting diode for data transfer were studied. The DALI protocol-based radiation chromaticity control system which allows us to set different lighting scenarios with constant data transmission rate was developed. The radiation chromaticity range covers almost the entire colour gamut in the colour space. The system of high-frequency matching of system component impedances was developed and frequency characteristics of the suggested scheme were studied for development of the system. Optimal parameters of the signal for visual light communication such as carrier frequency, modulation type and band were determined. Observation of the constellation diagram which represents different values of the complex amplitude of the keyed signal in the form of a complex number on a quadrature plane (cosine and sine components of the carrying signal) and of fixation of the amplitude of the error vector magnitude (EVM) was selected as a method of study of the transmission channel quality. The value of EVM in the visible light transmission channel was significantly lower for signals with amplitude modulation than for phase-manipulated signals. When implementing different lighting change scenarios, radiation of other crystals of the light emitting diode crystals not used for transmission did not lead to increase of EVM by more than one percent.


Sign in / Sign up

Export Citation Format

Share Document