Aluminium-Copper-SiCp Composite Materials Corrosion in Biodiesel

2012 ◽  
Vol 576 ◽  
pp. 425-428
Author(s):  
Md Abdul Maleque

The aim of this paper is to investigate the corrosion behaviour of aluminium-copper-SiCp composite materials under palm oil biodiesel (POB). Corrosion behaviour test was performed using both weight loss and polarization methods for two different types of aluminium-copper-SiCp composite materials such as ACM 1(2% Cu, 20% SiC, and 78% Al) and ACM 2 (6% Cu, 20% SiC, and 72% Al). The materials were characterized using scanning electron microscope (SEM) for surface morphology. The results showed that corrosion rate of ACM 2 is higher than ACM 1 in presence of palm oil biodiesel due to the higher amount of copper in the composite which is more susceptible to corrosion. The surface morphology after corrosion test showed that chemical corrosion occurs on the surface due to the dominant of the fatty acid in the POB. Therefore, in this study it can be concluded that aluminium-copper-SiCp composite materials are susceptible to corrosion in biodiesel.

2011 ◽  
Vol 409 ◽  
pp. 526-531 ◽  
Author(s):  
L. Monaco ◽  
J.L. McCrea ◽  
G. Palumbo ◽  
Uwe Erb

In this study, alternatives to corrosion-resistant cadmium coatings on high strength steel fasteners are explored. Nanocrystalline Zn-Ni and Zn-Ni-Co electrodeposits, synthesized by electrochemical deposition, were analyzed by potentiodynamic polarization in a 1M NaCl aqueous solution, to determine the corrosion behaviour of the alloys. Sample coatings were characterized using scanning electron microscopy to examine differences in surface morphology that can affect corrosion resistance. Energy dispersive x-ray spectroscopy was used to relate composition to corrosion resistance and to characterize the corrosion behavior during polarization. All coatings showed corrosion potentials at equivalent, or lower values than that of cadmium, suggesting that both alloys are viable as cadmium replacements. Specific compositions showed slightly passivating regions, but the brittle film formed during polarization is unstable. Comparatively, Zn-Ni shows a better resistance to corrosion than Zn-Ni-Co. The effect of composition on the corrosion resistance can be explained on the basis of the sacrificial depletion of Zn over Ni.


Author(s):  
J. R. Millette ◽  
R. S. Brown

The United States Environmental Protection Agency (EPA) has labeled as “friable” those building materials that are likely to readily release fibers. Friable materials when dry, can easily be crumbled, pulverized, or reduced to powder using hand pressure. Other asbestos containing building materials (ACBM) where the asbestos fibers are in a matrix of cement or bituminous or resinous binders are considered non-friable. However, when subjected to sanding, grinding, cutting or other forms of abrasion, these non-friable materials are to be treated as friable asbestos material. There has been a hypothesis that all raw asbestos fibers are encapsulated in solvents and binders and are not released as individual fibers if the material is cut or abraded. Examination of a number of different types of non-friable materials under the SEM show that after cutting or abrasion, tuffs or bundles of fibers are evident on the surfaces of the materials. When these tuffs or bundles are examined, they are shown to contain asbestos fibers which are free from binder material. These free fibers may be released into the air upon further cutting or abrasion.


2008 ◽  
Vol 45 (7) ◽  
pp. 348-351
Author(s):  
Mohammed Misbahul Amin
Keyword(s):  
Palm Oil ◽  

2017 ◽  
Vol 68 (11) ◽  
pp. 2700-2703 ◽  
Author(s):  
Kamel Earar ◽  
Vasile Iulian Antoniac ◽  
Sorana Baciu ◽  
Simion Bran ◽  
Florin Onisor ◽  
...  

This study examined and compared surface of human dentine after acidic etching with hydrogen peroxide, phosphoric acid liquid and gel. Surface demineralization of dentin is necessary for a strong bond of adhesive at dental surface. Split human teeth were used. After application of mentioned substances at dentin level measures of the contact angle and surface morphology were employed. Surface morphology was analyzed with the help of scanning electron microscopy and atomic force microscopy. Liquid phosphoric acid yielded highest demineralization showing better hydrophobicity than the rest, thus having more contact surface. Surface roughness are less evident and formed surface micropores of 4 �m remained open after wash and air dry providing better adhesive canalicular penetration and subsequent bond.


2018 ◽  
Vol 3 (1) ◽  
pp. 12 ◽  
Author(s):  
Zaimahwati Zaimahwati ◽  
Yuniati Yuniati ◽  
Ramzi Jalal ◽  
Syahman Zhafiri ◽  
Yuli Yetri

<p>Pada penelitian ini telah dilakukan isolasi dan karakterisasi bentonit alam menjadi nanopartikel montmorillonit. Bentonit alam yang digunakan diambil dari desa Blangdalam, Kecamatan Nisam Kabupaten Aceh Utara.  Proses isolasi meliputi proses pelarutan dengan aquades, ultrasonic dan proses sedimentasi. Untuk mengetahui karakterisasi montmorillonit dilakukan uji FT-IR, X-RD dan uji morfologi permukaan dengan Scanning Electron Microscopy (SEM). Partikel size analyzer untuk menganalisis dan menentukan ukuran nanopartikel dari isolasi bentonit alam. Dari hasil penelitian didapat ukuran nanopartikel montmorillonit hasil isolasi dari bentonit alam diperoleh berdiameter rata-rata 82,15 nm.</p><p><em>In this research we have isolated and characterized natural bentonite into montmorillonite nanoparticles. Natural bentonite used was taken from Blangdalam village, Nisam sub-district, North Aceh district. The isolation process includes dissolving process with aquades, ultrasonic and sedimentation processes.  The characterization of montmorillonite, FT-IR, X-RD and surface morphology test by Scanning Electron Microscopy (SEM). Particle size analyzer to analyze and determine the size of nanoparticles from natural bentonite insulation. From the research results obtained the size of montmorillonite nanoparticles isolated from natural bentonite obtained an average diameter of 82.15 nm.</em></p>


2021 ◽  
Vol 1126 (1) ◽  
pp. 012074
Author(s):  
Nitin Dattatreya Kamitkar ◽  
Satishkumar ◽  
A N Basavaraju ◽  
Shashikant Kushnoore ◽  
A B Deepa ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 692
Author(s):  
Navin Ramasamy ◽  
Mohammad Abul Kalam ◽  
Mahendra Varman ◽  
Yew Heng Teoh

In this study, the performance and emission of a thermal barrier coating (TBC) engine which applied palm oil biodiesel and diesel as a fuel were evaluated. TBC was prepared by using a series of mixture consisting different blend ratio of yttria stabilized zirconia (Y2O3·ZrO2) and aluminum oxide-silicon oxide (Al2O3·SiO2) via plasma spray coating technique. The experimental results showed that mixture of TBC with 60% Y2O3·ZrO2 + 40% Al2O3·SiO2 had an excellent nitrogen oxide (NO), carbon monoxide (CO), carbon dioxide (CO2), and unburned hydrocarbon (HC) reductions compared to other blend-coated pistons. The finding also indicated that coating mixture 50% Y2O3·ZrO2 + 50% Al2O3·SiO2 had the highest brake thermal efficiency (BTE) and lowest of brake specific fuel consumption (BSFC) compared to all mixture coating. Reductions of HC and CO emissions were also recorded for 60% Y2O3·ZrO2 + 40% Al2O3·SiO2 and 50% Y2O3·ZrO2 + 50% Al2O3·SiO2 coatings. These encouraging findings had further proven the significance of TBC in enhancing the engine performance and emission reductions operated with different types of fuel.


2021 ◽  
Vol 11 (4) ◽  
pp. 1619
Author(s):  
Jing Yan ◽  
Xia Li ◽  
Kaigui Zhu

The surface morphology of pure W bulks and nanocrystalline tungsten films was investigated after exposure to a low-energy (100 eV/D), high-flux (1.8 × 1021 D·m−2s−1) deuterium plasma. Nanocrystalline tungsten films of 6 μm thickness were deposited on tungsten bulks and exposed to deuterium plasma at various fluences ranging from 1.30 × 1025 to 5.18 × 1025 D·m−2. Changes in surface morphology from before to after irradiation were studied with scanning electron microscopy (SEM). The W bulk exposed to low-fluence plasma (1.30 × 1025 D·m−2) shows blisters. The blisters on the W bulk irradiated to higher-fluence plasma are much larger (~2 µm). The blisters on the surface of W films are smaller in size and lower in density than those of the W bulks. In addition, the modifications exhibit the appearance of cracks below the surface after deuterium plasma irradiation. It is suggested that the blisters are caused by the diffusion and aggregation of the deuterium-vacancy clusters. The deuterium retention of the W bulks and nanocrystalline tungsten films was studied using thermal desorption spectroscopy (TDS). The retention of deuterium in W bulks and W films increases with increasing deuterium plasma fluence when irradiated at 500 K.


Sign in / Sign up

Export Citation Format

Share Document