Influence of Pigment Extraction on Pb(II) Biosorption of Cladophora and Spirogyra Algae Powder

2012 ◽  
Vol 610-613 ◽  
pp. 3591-3598
Author(s):  
Yi Chao Lee ◽  
Shui Ping Chang ◽  
Chih Sheng Lee ◽  
Nien Hsin Kao

The Cladophora and Spirogyra genera are classified within the green algae division. Species belonging to these genera comprise large filamentous algae, possess significant biomass, and are found in freshwater around the world. These characteristics give Cladophora and Spirogyra high potential to be developed as biological materials. For this study, we harvested fresh Cladophora and Spirogyra and produced algae powder using two of conventional procedures: with pigment extraction and without pigment extraction. The resulting algae powders were subjected to Pb(II) biosorption, and the differences in biosorption rates were subsequently analyzed. Our study found the following: (i) significant differences in cell structure, cell wall thickness, the type and content of cell composition, and the quantity of epiphytes between Cladophora and Spirogyra. This variation influenced the functional groups within the resulting algae powders and their binding sites, which further led to different levels of Pb(II) adsorption. (ii) Glacial acetic acid, a compound commonly employed in pigment extraction procedures, affected the functional groups and the binding sites of the resulting algae powders. For Cladophora algae powder, Pb(II) biosorption was reduced by 16.6 %; whereas for Spirogyra algae powder, Pb(II) biosorption was reduced by 19.8 %. (iii) The pigment extraction procedure exerted the most significant influence on the carbonyl groups and hydroxyl groups in algae powder. (iv) The pigment extraction procedure is not suitable for the preparation of algae powders which will be used for metal ion biosorption.

2013 ◽  
Vol 295-298 ◽  
pp. 123-128
Author(s):  
Shui Ping Chang ◽  
Yi Chao Lee ◽  
Chih Sheng Lee ◽  
Nien Hsin Kao

The Cladophora and Spirogyra algae examined in this study belong to the Chlorophyta division. Macro filamentous algae, which are widespread in fresh water worldwide, have high potential to be developed as biological materials because of their large biomass and availability. In this study, we collected fresh algae from where they grew and produced bleached and unbleached algae powder using to adsorb Cu(II) ion solution. After the biosorption process, we noted the following four significant findings: (i) The functional groups and binding sites in the produced algae powder were affected, causing variations in the amount of copper adsorbed. The variations resulted from differences in the cell structure, the cell wall thickness of Cladophora and Spirogyra algae, cell composition, and the types and amount of epiphytic algae. (ii) Common bleaching procedures using glacial acetic acid influenced the binding sites of the functional groups and the biomass of the produced powder. Because of the bleaching, the amount of copper adsorbed by the Cladophora powder declined by 14.2%, and by 15.7% for Spirogyra powder. (iii) The carbonyl and hydroxyl groups of unbleached powder were the main elements affected during the bleaching procedures. Examining whether the biosorption experiment results fit Gin’s biosorption model, we found that the biosorption amount and equilibrium reaction of the two bleached algae powders were inferior to that of the unbleached algae powders. (iv) The bleaching procedure using glacial acetic acid was not suitable for producing algae powder to use as an adsorbent for metal ions.


2017 ◽  
Vol 53 (76) ◽  
pp. 10588-10591 ◽  
Author(s):  
Ya Zhou ◽  
Hanjun Sun ◽  
Faming Wang ◽  
Jinsong Ren ◽  
Xiaogang Qu

Herein we selectively deactivate the ketonic carbonyl, carboxylic, or hydroxyl groups on GQDs and compare their ROS generation ability. The ROS generation ability of GQDs is closely related to these oxygen functional groups, especially for the ketonic carbonyl groups.


Author(s):  
Brigita Neiberte ◽  
Antons Jablonsky ◽  
Galia Shulga ◽  
Anrijs Verovkins ◽  
Sanita Vitolina ◽  
...  

The aim was to compare the chemical composition and some properties of three industrial lignosulfonates produced as a by-product at three pulp and paper mills (Russia). Using the classical methods of lignin chemistry, it was found that there were differences in the elemental composition and the content of functional groups of the industrial lignosulfonates, but in general, they were not very significant. The Kondopoga lignosulfonates contained the highest content of methoxy, aliphatic hydroxyl groups and carbonyl groups. The Vyborg lignosulfonates had the highest degree of sulfonation and the lowest content of carbonyl groups. The content of the functional groups in the chemical composition of the Syassky lignosulfonates was intermediate between the functional composition of the Vyborg and Kondopoga lignosulfonates. The Vyborg lignosulfonates had the lowest values of the viscosity average molecular mass, dynamic viscosity and surface tension at the air-water interface in comparison with these parameters of the Kondopoga and Syassky lignosulfonates.


2018 ◽  
Vol 16 (1) ◽  
pp. 112-119
Author(s):  
VLADIMIR GLEB NAYDONOV

The article considers the students’ tolerance as a spectrum of personal manifestations of respect, acceptance and correct understanding of the rich diversity of cultures of the world, values of others’ personality. The purpose of the study is to investgate education and the formation of tolerance among the students. We have compiled a training program to improve the level of tolerance for interethnic differences. Based on the statistical analysis of the data obtained, the most important values that are significant for different levels of tolerance were identified.


2020 ◽  
Vol 20 (5) ◽  
pp. 396-407 ◽  
Author(s):  
Zhaojun Sheng ◽  
Siyuan Ge ◽  
Min Gao ◽  
Rongchao Jian ◽  
Xiaole Chen ◽  
...  

Embelin is a naturally occurring para-benzoquinone isolated from Embelia ribes (Burm. f.) of the Myrsinaceae family, and contains two carbonyl groups, a methine group and two hydroxyl groups. With embelin as the lead compound, more than one hundred derivatives have been reported. Embelin is well known for its ability to antagonize the X-linked inhibitor of apoptosis protein (XIAP) with an IC50 value of 4.1 μM. The potential of embelin and its derivatives in the treatment of various cancers has been extensively studied. In addition, these compounds display a variety of other biological effects: antimicrobial, antioxidant, analgesic, anti-inflammatory, anxiolytic and antifertility activity. This paper reviews the recent progress in the synthesis and biological activity of embelin and its derivatives. Their cellular mechanisms of action and prospects in the research and development of new drugs are also discussed.


Crystals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 62
Author(s):  
Xu Xu ◽  
Zeping Zhang ◽  
Wenjuan Yao

Graphene and graphene oxide (GO) usually have grain boundaries (GBs) in the process of synthesis and preparation. Here, we “attach” GBs into GO, a new molecular configuration i.e., polycrystalline graphene oxide (PGO) is proposed. This paper aims to provide an insight into the stability and mechanical properties of PGO by using the molecular dynamics method. For this purpose, the “bottom-up” multi-structure-spatial design performance of PGO and the physical mechanism associated with the spatial structure in mixed dimensions (combination of sp2 and sp3) were studied. Also, the effect of defect coupling (GBs and functional groups) on the mechanical properties was revealed. Our results demonstrate that the existence of the GBs reduces the mechanical properties of PGO and show an “induction” role during the tensile fracture process. The presence of functional groups converts in-plane sp2 carbon atoms into out-of-plane sp3 hybrid carbons, causing uneven stress distribution. Moreover, the mechanical characteristics of PGO are very sensitive to the oxygen content of functional groups, which decrease with the increase of oxygen content. The weakening degree of epoxy groups is slightly greater than that of hydroxyl groups. Finally, we find that the mechanical properties of PGO will fall to the lowest values due to the defect coupling amplification mechanism when the functional groups are distributed at GBs.


2014 ◽  
Vol 881-883 ◽  
pp. 757-760
Author(s):  
Xiao Qing Ren ◽  
Li Zhen Ma ◽  
Xin Yi He

The objective of this study was to examine the effect of different levels of catfish bone paste to flour on the physicochemical, textural and crumb structure properties of steamed bread. Six different levels (0, 1, 3, 5, 7,10 %) of catfish bone paste to flour were used in the formulation of the steamed bread. The results showed that the weight loss and TTA of steamed bread decreased with an increase in the levels of the catfish bone paste. On the other hand, the pH increased with an increase in the levels of the catfish bone paste. The specific volume, hardness, chewiness and gas cell structure in the crumb of steamed bread with catfish bone paste at 5% supplementation level were better. Thus, a value of 5% catfish bone paste was considered a better level for incorporation into the steamed bread.


Author(s):  
Mohammad Paydar ◽  
Asal Kamani Fard

More than 150 cities around the world have expanded emergency cycling and walking infrastructure to increase their resilience in the face of the COVID 19 pandemic. This tendency toward walking has led it to becoming the predominant daily mode of transport that also contributes to significant changes in the relationships between the hierarchy of walking needs and walking behaviour. These changes need to be addressed in order to increase the resilience of walking environments in the face of such a pandemic. This study was designed as a theoretical and empirical literature review seeking to improve the walking behaviour in relation to the hierarchy of walking needs within the current context of COVID-19. Accordingly, the interrelationship between the main aspects relating to walking-in the context of the pandemic- and the different levels in the hierarchy of walking needs were discussed. Results are presented in five sections of “density, crowding and stress during walking”, “sense of comfort/discomfort and stress in regard to crowded spaces during walking experiences”, “crowded spaces as insecure public spaces and the contribution of the type of urban configuration”, “role of motivational/restorative factors during walking trips to reduce the overload of stress and improve mental health”, and “urban design interventions on arrangement of visual sequences during walking”.


1995 ◽  
Vol 305 (1) ◽  
pp. 151-158 ◽  
Author(s):  
P Spencer ◽  
P M Jordan

Experiments are described in which the individual properties of the two 5-aminolaevulinic acid (ALA) binding sites, the A-site and the P-site, of 5-aminolaevulinic acid dehydratase (ALAD) have been investigated. The ALA binding affinity at the A-site is greatly enhanced (at least 10-fold) on the binding of the catalytic metal ion (bound at the alpha-site). The nature of the catalytic metal ion, Mg2+ or Zn2+, also gave major variations in the substrate Km, P-site affinity for ALA, the effect of potassium and phosphate ions and the pH-dependence of substrate binding. Modification of the P-site by reaction of the enzyme-substrate Schiff base with NaBH4 and analysis of the reduced adduct by electro-spray mass spectrometry indicated a maximum of 1 mol of substrate incorporated/mol of subunit, correlating with a linear loss of enzyme activity. The reduced Schiff-base adduct was used to investigate substrate binding at the A-site by using rate-of-dialysis analysis. The affinity for ALA at the A-site of Mg alpha Zn beta ALAD was found to determine the Km for the reaction and was pH-dependent, with its affinity increasing from 1 mM at pH 6 to 70 microM at pH 8.5. The affinity of ALA at the P-site of Zn alpha An beta ALAD is proposed to limit the Km at pH values above 7, since the measured Kd for ALA at the A-site in 45 microM Tris, pH 8, was well below the observed Km (600 microM) under the same conditions. The amino group of the ALA molecule bound at the P-site was identified as a critical binding component for the A-site, explaining why ALA binding to ALAD is ordered, with the P-site ALA binding first. Structural requirements for ALA binding at the A- and P-sites have been identified: the P-site requires the carbonyl and carboxylate groups, whereas the A-site requires the amino, carbonyl and carboxylate groups of the substrate.


Sign in / Sign up

Export Citation Format

Share Document