Study on Amphiphilic Macromolecules Adsorbent of Cellulose Mixes Ether Based on Cotton Stalk

2013 ◽  
Vol 690-693 ◽  
pp. 1435-1439
Author(s):  
Hong Ying Hao ◽  
Zi Qiang Shao

in this work, the organic macromolecules adsorbent cyanoethylated carboxymethyl cellulose having hydrophilic and lipophilicity characteristics were preparated through properly carboxymethylation and cyanoethylation process, basing on cotton stalk cellulose treated by steam explosion as raw material, which the content of cellulose in the product is 72.6%. The effect of carboxymethylation degree on cyanoethylation degree was discussed. Then its characteristics of solubility, thermal properties, acid resistance and absorptive property were researched

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Libo Zhang ◽  
Junyan Tan ◽  
Gangying Xing ◽  
Xintong Dou ◽  
Xuqiang Guo

AbstractConversion of the abundant agricultural residual cotton stalk (CS) into useful chemicals or functional materials could alleviate the fossil fuels caused energy shortages and environmental crises. Although some advances have been achieved, less attention has been paid to the plant tissues effect. In this study, the plant tissue of CS was changed by part degradation of some components (hemicelluloses and lignin, for example) with the aid of acid/base (or both). The pretreated CS was transformed into hydrochar by hydrothermal carbonization (HTC) method. Morphological and chemical compositions of CS hydrochar were analyzed by various techniques, including elemental analysis, Fourier transform infrared (FTIR), BET analysis, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Methylene blue (MB) removal of prepared CS hydrochar was used to evaluate CS hydrochar pollutions adsorption capacity. Results reveal acid/base (or both) pretreatment is beneficial for CS raw material to prepare high-quality CS hydrochar. The effects of some parameters, such as initial MB concentration, temperature, pH value and recyclability on the adsorption of MB onto both acid and base-pretreated CS hydrochar (CS-H2SO4 + NaOH-HTC) were studied. The present work exhibits the importance of agricultural waste biomass material plant tissues on its derived materials, which will have a positive effect on the direct utilization of waste biomass.


2018 ◽  
Vol 11 (3) ◽  
pp. 124
Author(s):  
Shella Permatasari Santoso ◽  
Niko Sanjaya ◽  
Aning Ayucitra

The use of cassava peels as raw material for Sodium Carboxymethyl Cellulose productionCassava peels are abundantly available and may be used as an lowcost cellulose source (80-85% cellulose per weight cassava peel). the study was to evaluate the effect of the concentration of sodium hydroxide, sodium chloroacetate, and temperature reaction on the sodium carboxymethyl cellulose (sodium-CMC) characteristics i.e. yield, purity, and degree of substitution in sodium-CMC preparation.  Sodium-CMC functional group was determined using FTIR spectrophotometer. Cassava peels was dried and grounded to 50 mesh. Lignin was eliminated from cassava peel by extraction of grounded cassava peel with 10% NaOH at 35 °C for 5 h. Cassava peel free lignin was then re-extracted using 10% of acetic acid and sodium chloride at 75 °C for 1 h, thus cellulose free hemicellulose was obtained. Alkalization at 30 °C for 90 min was performed by adding sodium hydroxyde at 10-40% to cellulose using isopropyl alcohol solvent. Following this, etherification was conducted by adding sodium chloroacetate of 1-5 g at 50-80 °C for 6 h. As result, the highest purity of sodium-CMC (96.20%) was obtained from alkalization using 20% of sodium hydroxide and etherification using 3 g sodium chloroacetate at 70 °C. Sodium-CMC yield was 22% and degree of substitution 0.705.Keywords: cassava peel, carboxymethyl cellulose, sodium-CMC, etherification AbstrakKulit singkong merupakan sumber selulosa yang berlimpah dan murah, dengan kadar selulosa 80-85% dari berat kulit singkong. Tujuan penelitian ini adalah memanfaatkan selulosa dalam kulit singkong sebagai bahan baku pembuatan natrium karboksimetil selulosa (Na-CMC), mempelajari pengaruh natrium hidroksida, natrium kloroasetat serta suhu pada karakteristik Na-CMC seperti perolehan, kemurnian, dan derajat substitusi, serta menentukan kondisi operasi optimum untuk pembuatan Na-CMC berdasarkan kemurnian Na-CMC terbesar. Gugus fungsi Na-CMC ditentukan menggunakan Fourier Transform Infrared Spectra. Mula-mula, kulit singkong dikeringkan dan dihancurkan sehingga berukuran 50 mesh. Kulit singkong diekstraksi dengan NaOH 10% di suhu 35 °C selama 5 jam, untuk melarutkan lignin. Kulit singkong bebas lignin diekstrak dengan asam asetat 10% dan natrium klorida dengan pemanasan 750 °C selama 1 jam untuk melarutkan hemiselulosa sehingga didapatkan selulosa. Alkalisasi dilakukan dengan mereaksikan selulosa dengan NaOH 10-40% dengan pelarut isopropil alkohol pada suhu 30 °C selama 90 menit, dilanjutkan eterifikasi dengan natrium kloroasetat 1-5 g pada suhu 50-80 °C selama 6 jam. Berdasarkan hasil penelitian, karakteristik Na-CMC terbaik didapatkan dari alkalisasi selulosa menggunakan NaOH 20% serta eterifikasi menggunakan 3 g natrium kloroasetat pada suhu 70 °C. Perolehan Na-CMC yang didapat adalah sebesar 22%, kemurnian 96,20%, derajat substitusi 0,705; termasuk dalam grade kedua menurut SNI 06-3736-1995.Kata kunci: kulit singkong, karboksimetil selulosa, Na-CMC, eterifikasi


Author(s):  
Usman Aziz ◽  
Muhammad Faisal Aslam ◽  
Haider Ali ◽  
Ehsan Ul Haq ◽  
Ramzaan Kareem ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4288 ◽  
Author(s):  
Alessandro Bertini ◽  
Mattia Gelosia ◽  
Gianluca Cavalaglio ◽  
Marco Barbanera ◽  
Tommaso Giannoni ◽  
...  

Cardoon (Cynara cardunculus) is a promising crop from which to obtain oilseeds and lignocellulosic biomass. Acid-catalyzed steam explosion is a thermochemical process that can efficiently pre-treat lignocellulosic biomass. The drawback is the production of a high number of carbohydrate degradation products in the liquid fraction that could inhibit microbial growth. In this work, the lignocellulosic biomass of cardoon, gathered from a dedicated field, were used as the raw material for the production of fermentable monosaccharides by employing acid-catalyzed steam explosion. The raw material was pre-soaked with a dilute 1% (w/w) sulfuric acid solution and then subjected to steam explosion under three different severity conditions. The recovered slurry was separated into solid and liquid fractions, which were individually characterized to determine total carbohydrate and inhibitor concentrations. The slurry and the washed solid fraction underwent enzymatic hydrolysis to release glucose and pentose monosaccharides. By conducting the pre-treatment at 175 °C for 35 min and hydrolyzing the obtained slurry, a yield of 33.17 g of monosaccharides/100 g of cardoon was achieved. At the same conditions, 4.39 g of inhibitors/100 g of cardoon were produced.


2017 ◽  
Vol 728 ◽  
pp. 289-294
Author(s):  
Tanapak Metanawin ◽  
Praripatsaya Panutumrong ◽  
Jirapong Phangham ◽  
Siripan Metanawin

The present of this study aims to the use of carboxymethyl cellulose (CMC) improving the ability of fiber in the dyeing process. Carboxymethyl cellulose was synthesized from cellulose of banana leaves by esterification method. The effect of carboxymethyl cellulose contents on the structure, thermal properties and dye absorption were also investigated. Then, the CMC/PP composite fibers were obtained from single screw extruder at various contents of CMC (1wt%, 3wt% and 5wt%). The results from XRD showed that CMC were good compatibility with PP composite fibers. The results of thermal analysis showed that the incorporation of CMC into PP did not affect the melt temperature of the composite fibers. After dyeing, the dye however was absorbed by the CMC/PP fibers more than the pristine PP fibers. The results of absorption of dye on the CMC/PP fibers from spectrophotometer showed that dye absorbability were significantly increased with CMC contents.


2011 ◽  
Vol 383-390 ◽  
pp. 3291-3297
Author(s):  
Shiao Zhao ◽  
Bo Lin Wu ◽  
Shuo Qin ◽  
Yan Rong Zhao ◽  
Zu Sheng Hu

In order to explore the effect of removing siliceous components on acid resistance of fracturing proppants, acid resistance of fracturing proppants in a new silicon-free system was studied in this paper. The fracturing proppants were made by pressureless sintering using high-purity alumina and barium carbonate as the basic raw material. Acid resistance test was carried out in 12 wt% HCl + 3 wt% HF at 65 oC for 30 minutes according to The Petroleum and Gas Industrial Standards of China (SY/T5108-2006) and morphology, structure and chemical analysis of the samples were investigated using X-ray diffraction and scanning electron microscopy. Experiments show that fracturing proppants that contain barium aluminates have better acid resistance. The acid solubility of the samples is less than 3%, especially when the content of barium carbonate is about 10% (mass fraction, the same below), the acid solubility of the sample reaches 0.52% which is far beyond the demands (5%) of the Standards of SY/T5108-2006. Results prove that the removal of siliceous components of raw materials can prominently improve the acid resistance of fracturing proppants. It can provide a new referential thought for improving the acid resistance of fracturing proppants.


2015 ◽  
Vol 815 ◽  
pp. 193-197 ◽  
Author(s):  
Abdul Mutalib Leman ◽  
Dafit Feriyanto ◽  
M.N.M. Salleh ◽  
Ishak Baba

Metallic Fe80Cr20 alloy in thermal stability analysis is investigated. Approached method is combination technique (milled and UT) of ball milling (milled) combined with ultrasonic technique (UT) which is not yet fully explored. From Energy Dispersive x-ray Spectroscopy (EDS) analysis resulted that the composition of 80 wt% Fe and 20 wt% Cr in individual particle was achieved at milled and UB 4.5 h sample. Higher thermal stability of treated samples approximately 63% at 1100 °C temperature operation which showed by milled and UT at 4.5 h when compared to raw material. Combination technique shown high prospect to advance exploration in improving thermal stability which suitable for interconnect application.


2016 ◽  
Vol 51 (1) ◽  
pp. 135-150 ◽  
Author(s):  
Yanhong Feng ◽  
Junshan Lan ◽  
Pengtao Ma ◽  
Xiaolong Dong ◽  
Jinping Qu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document