Preparative Techniques and its Performance of Chemically Foamed Cement Paste

2013 ◽  
Vol 690-693 ◽  
pp. 700-703
Author(s):  
Xin Wei Ma ◽  
Xue Ying Li

The foamed cement paste (FCP) is a kind of inorganic insulation material. It is characterized by its light weight, heat-insulating and fire-proofing properties, and the thermal conductivity is close to that of expanded polystyrene (EPS). The foamed cement paste is achieved by means of chemical reaction. The mixture proportion, the preparation process, mechanical and thermal properties are investigated in this paper. The results show that properly mixed paste foams stably, and the bulk density could be controlled. The hardened FCP could be used as insulating filler material in composite walls, as well as blocks for Thermal insulation walls.

2018 ◽  
Vol 149 ◽  
pp. 01076
Author(s):  
Guendouz Mohamed ◽  
Boukhelkhal Djamila

Over the past twenty years, the rubber wastes are an important part of municipal solid waste. This work focuses on the recycling of rubber waste, specifically rubber waste of used shoes discharged into the nature and added in the mass of crushed sand concrete with percentage (10%, 20%, 30% and 40%). The physical (workability, fresh density), mechanical (compressive and flexural strength) and thermal (thermal conductivity) of different crushed sand concrete made are analyzed and compared to the respective controls. The use of rubber waste in crushed sand concrete contributes to reduce the bulk density and performance of sand concrete. Nevertheless, the use of rubber aggregate leads to a significant reduction in thermal conductivity, which improves the thermal insulation of crushed sand concrete.


2018 ◽  
Vol 16 (37) ◽  
pp. 118-126
Author(s):  
Shihab A. Zaidan

Fabrication of porous clay refractory insulating specimens from Iraqi kaolin with different percentage of Expanded Polystyrene (EPS) waste crumbs additions were investigated. After mixing and forming by hand molding, the specimens was dried and fired at 1300 oC. The structural, physical, mechanical and thermal properties of the refractory insulating products were measured. Maximum addition of EPS (1.25 wt%) lead to reduce the linear shrinkage to less than 1.7% and increased apparent porosity up to 50 %. As well as, the density, Modulus of rupture and thermal conductivity were reduced to 1.39 g/cm3, 4.1 MPa and 0.21 W/m.K, respectively. The final outcome, addition of EPS showed good results in the formation of pores without distorting the dimensions of specimens and without any cracks. In addition, it is possible to use these thermal insulators at temperatures up to 1300 oC.


2015 ◽  
Vol 729 ◽  
pp. 3-8
Author(s):  
Mst Nazmunnahar ◽  
Alena Vimmrova

Lightweight gypsum materials foamed by the help of stone dust were investigated. Lightweight material prepared from the gypsum as a main binder and foamed by stone dust and acid agent. The materials with the bulk density are 607 kg/m3, compressive strength about 1.3 MPa and thermal conductivity was prepared. Basic physical, mechanical and thermal properties were investigated.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1790
Author(s):  
Jeong-Hyeon Kim ◽  
Jae-Hyeok Ahn ◽  
Jeong-Dae Kim ◽  
Dong-Ha Lee ◽  
Seul-Kee Kim ◽  
...  

Polyurethane foam (PUF) has generally been used in liquefied natural gas (LNG) carrier cargo containment systems (CCSs) owing to its excellent mechanical and thermal properties over a wide range of temperatures. An LNG CCS must be designed to withstand extreme environmental conditions. However, as the insulation material for LNGC CCSs, PUF has two major limitations: its strength and thermal conductivity. In the present study, PUFs were synthesized with various weight percentages of porous silica aerogel to reinforce the characteristics of PUF used in LNG carrier insulation systems. To evaluate the mechanical strength of the PUF-silica aerogel composites considering LNG loading/unloading environmental conditions, compressive tests were conducted at room temperature (20 °C) and a cryogenic temperature (−163 °C). In addition, the thermal insulation performance and cellular structure were identified to analyze the effects of silica aerogels on cell morphology. The cell morphology of PUF-silica aerogel composites was relatively homogeneous, and the cell shape remained closed at 1 wt.% in comparison to the other concentrations. As a result, the mechanical and thermal properties were significantly improved by the addition of 1 wt.% silica aerogel to the PUF. The mechanical properties were reduced by increasing the silica aerogel content to 3 wt.% and 5 wt.%, mainly because of the pores generated on the surface of the composites.


2021 ◽  
Vol 320 ◽  
pp. 181-185
Author(s):  
Elvija Namsone ◽  
Genadijs Sahmenko ◽  
Irina Shvetsova ◽  
Aleksandrs Korjakins

Because of low calcination temperature, magnesia binders are attributed as low-CO2 emission materials that can benefit the environment by reducing the energy consumption of building sector. Portland cement in different areas of construction can be replaced by magnesia binder which do not require autoclave treatment for hardening, it has low thermal conductivity and high strength properties. Magnesium-based materials are characterized by decorativeness and ecological compatibility.The experimental part of this research is based on the preparation of magnesia binders by adding raw materials and calcinated products and caustic magnesia. The aim of this study was to obtain low-CO2 emission and eco-friendly material using local dolomite waste materials, comparing physical, mechanical, thermal properties of magnesium binders.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6080-6094
Author(s):  
Muhammed Said Fidan ◽  
Murat Ertaş

The procedure for the liquefaction of apricot stone shells was reported in Part 1. Part 2 of this work determines the morphological, mechanical, and thermal properties of the bio-based rigid polyurethane foam composites (RPUFc). In this study, the thermal conductivity, compressive strength, compressive modulus, thermogravimetric analysis, flammability tests (horizontal burning and limited oxygen index (LOI)) in the flame retardants), and scanning electron microscope (SEM) (cell diameter in the SEM) tests of the RPUFc were performed and compared with control samples. The results showed the thermal conductivity (0.0342 to 0.0362 mW/mK), compressive strength (10.5 to 14.9 kPa), compressive modulus (179.9 to 180.3 kPa), decomposition and residue in the thermogravimetric analysis (230 to 491 °C, 15.31 to 21.61%), UL-94 and LOI in the flame retardants (539.5 to 591.1 mm/min, 17.8 to 18.5%), and cell diameter in the SEM (50.6 to 347.5 μm) of RPUFc attained from liquefied biomass. The results were similar to those of foams obtained from industrial RPUFs, and demonstrated that bio-based RPUFc obtained from liquefied apricot stone shells could be used as a reinforcement filler in the preparation of RPUFs, specifically in construction and insulation materials. Moreover, liquefied apricot stone shell products have potential to be fabricated into rigid polyurethane foam composites.


Buildings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 81
Author(s):  
Cassandra Lafond ◽  
Pierre Blanchet

The energy efficiency of buildings is well documented. However, to improve standards of energy efficiency, the embodied energy of materials included in the envelope is also increasing. Natural fibers like wood and hemp are used to make low environmental impact insulation products. Technical characterizations of five bio-based materials are described and compared to a common, traditional, synthetic-based insulation material, i.e., expanded polystyrene. The study tests the thermal conductivity and the vapor transmission performance, as well as the combustibility of the material. Achieving densities below 60 kg/m3, wood and hemp batt insulation products show thermal conductivity in the same range as expanded polystyrene (0.036 kW/mK). The vapor permeability depends on the geometry of the internal structure of the material. With long fibers are intertwined with interstices, vapor can diffuse and flow through the natural insulation up to three times more than with cellular synthetic (polymer) -based insulation. Having a short ignition times, natural insulation materials are highly combustible. On the other hand, they release a significantly lower amount of smoke and heat during combustion, making them safer than the expanded polystyrene. The behavior of a bio-based building envelopes needs to be assessed to understand the hygrothermal characteristics of these nontraditional materials which are currently being used in building systems.


2020 ◽  
pp. 152808372093662
Author(s):  
K C Nagaraja ◽  
S Rajanna ◽  
G S Prakash ◽  
G Rajeshkumar

In this work the effect of stacking sequence of Carbon (C)/Glass (G) fibers and halloysites addition (1, 3 and 5 wt.%) on the mechanical and thermal properties of the hybrid composites were explored. The composite laminates were prepared by using Vacuum Assisted Resin Infusion Technique (VARIT). The outcomes disclosed that the hybrid composites having sequence of C2G3C2 (2-Carbon/3-Glass/2-Carbon layers) showed better overall properties. Moreover, the addition of halloysites enhanced the mechanical and thermal properties of the C2G3C2 hybrid composites. In particular, the hybrid composites added with 3 wt.% of halloysites showed higher overall properties among the other hybrid composites investigated. Finally, the morphological analysis was performed on the fractured surface of mechanical tested composites to study the failure mechanisms occurred. Based on the obtained results it can be concluded that the C2G3C2 hybrid composites added with 3 wt.% of halloysite could be a suitable alternative light weight material for automobile, aerospace and building structures.


2020 ◽  
Vol 103 (10) ◽  
pp. 5939-5951
Author(s):  
Yixiao Ren ◽  
Fu‐Zhi Dai ◽  
Huimin Xiang ◽  
Xiaohui Wang ◽  
Luchao Sun ◽  
...  

Author(s):  
Gurminder Singh ◽  
Pulak M Pandey

In the present paper, mechanical and thermal properties of rapidly manufactured copper parts were studied. The combination of three-dimensional printing and ultrasonic assisted pressureless sintering was used to fabricate copper parts. First, the ultimate tensile strength and thermal conductivity were compared between ultrasonic assisted and conventional pressureless sintered samples. The homogenously mixing of particles and local heat generation by ultrasonic vibrations promoted the sintering driving process and resulted in better mechanical and thermal properties. Furthermore, response surface methodology was adopted for the comprehensive study of the ultrasonic sintering parameters (sintering temperature, heating rate, and soaking time with ultrasonic vibrations) on ultimate tensile strength and thermal conductivity of the fabricated sample. Analysis of variance was performed to identify the significant factors and interactions. The image processing method was used to identify the surface porosity at different parameter levels to analyse the experimental results. High ultimate tensile strength was obtained at high sintering temperature, long soaking time, and slow heating rate with low surface porosity. After 60 min of soaking time, no significant effect was observed on the thermal conductivity of the fabricated sample. The significant interactions revealed less effect of soaking time at low sintering temperatures for ultimate tensile strength and less effect of heating rate at low sintering temperatures for thermal conductivity. Multi-objective optimization was carried out to identify parameters for maximum ultimate tensile strength and maximum thermal conductivity.


Sign in / Sign up

Export Citation Format

Share Document