The Effects of Calcium on the In Vitro Cassava Storage Root Formation

2013 ◽  
Vol 726-731 ◽  
pp. 4529-4533 ◽  
Author(s):  
Yuan Yao ◽  
Yi Min ◽  
Meng Ting Geng ◽  
Xiao Hui Wu ◽  
Xin Wen Hu ◽  
...  

Calcium can affect in vitro cassava storage roots formation and starch accumulation. Low concentration of calcium stimulates to induce in vitro cassava storage roots formation and the accumulation of starches. With the addition of calcium concentration, the diameter of the in vitro cassava storage roots was increased, but the induction rate and starch content was decreased. The scanning electron microscope observations SC124 in vitro cassava storage roots starch and field cultivation of cassava root starch, starch grains formed by these two different ways is very similar in size and shape. Our findings show that, apply tissue culture techniques to study the cassava starch synthesis mechanism is feasible.

2018 ◽  
pp. 47-52

Epimedium elatum (Morren & Decne) of family Berberidaceace is a rare perennial medicinal plant, endemic to high altitude forests of Northwestern Himalayas in India. Ethnobotanically, it has been used as an ingredient for treatment of bone-joint disorders, impotence and kidney disorders in Kashmir Himalayas. Phytochemically, it is rich in Epimedin ABC and Icariin; all of these have been demonstrated to possess remarkable biological activities like PDE-5 inhibition (treatment of erectile dysfunction), anticancer, antiosteoporosis antioxidant and antiviral properties. The present investigation reports its traditional usage, comprehensive distribution and conservation status from twenty ecogeographical regions in Kashmir Himalayas, India. The species was reported from Gurez valley for the first time. Numerous threats like excessive grazing, deforestration, habitat fragmentation, tourism encroachment, landslides and excessive exploitation have decreased its natural populations in most of the surveyed habitats. Consequently, its existence may become threatened in near future if timely conservation steps are not taken immediately by concerned stakeholders involved in medicinal plant research. Moreover, use of plant tissue culture techniques is recommended for development of its in vitro propagation protocols. Therefore, introduction of this medicinal plant in botanical gardens, protected sites and development of monitoring programmes are needed for its immediate conservation in Northwestern Himalayas, India.


2015 ◽  
Vol 77 (24) ◽  
Author(s):  
Siti Suhaila A. Rahman ◽  
Norwati Muhammad ◽  
Nor Hasnida Hassan ◽  
Haliza Ismail ◽  
Nazirah Abdullah ◽  
...  

Neolamarckia cadamba (kelempayan) is a multipurpose and fast growing timber species. The tree is grown for timber, paper-making and as ornamental plant. It is reported that its barks and leaves possesed medicinal values and its flowers are used in perfumes. The species is also known to be suitable for plywood, packing case, toys and short-fibred pulp. Therefore, mass production of high quality planting material of N. cadamba is important to support plantation program of this species. Here we presented mass production of N. cadamba through tissue culture techniques. Nodal segments derived from in vitro germinated seeds were used and induced direct organogenesis to produce shoots and roots using MS media (1962) and plant growth regulators (BAP and IBA) that are relatively cheaper than previously used methods. The tissue culture technique of N. cadamba developed may help in ensuring supply of planting materials that are feasible for commercial plantation purposes.


Author(s):  
Getu Beyene ◽  
Raj Deepika Chauhan ◽  
Jackson Gehan ◽  
Dimuth Siritunga ◽  
Nigel Taylor

Abstract Key message Among the five cassava isoforms (MeAPL1–MeAPL5), MeAPL3 is responsible for determining storage root starch content. Degree of storage root postharvest physiological deterioration (PPD) is directly correlated with starch content. Abstract AGPase is heterotetramer composed of two small and two large subunits each coded by small gene families in higher plants. Studies in cassava (Manihot esculenta) identified and characterized five isoforms of Manihot esculenta ADP-glucose pyrophosphorylase large subunit (MeAPL1–MeAPL5) and employed virus induced gene silencing (VIGS) to show that MeAPL3 is the key isoform responsible for starch and dry matter accumulation in cassava storage roots. Silencing of MeAPL3 in cassava through stable transgenic lines resulted in plants displaying significant reduction in storage root starch and dry matter content (DMC) and induced a distinct phenotype associated with increased petiole/stem angle, resulting in a droopy leaf phenotype. Plants with reduced starch and DMC also displayed significantly reduced or no postharvest physiological deterioration (PPD) compared to controls and lines with high DMC and starch content. This provides strong evidence for direct relationships between starch/dry matter content and its role in PPD and canopy architecture traits in cassava.


1994 ◽  
Vol 21 (6) ◽  
pp. 829 ◽  
Author(s):  
GW Singletary ◽  
R Banisadr ◽  
PL Keeling

Heat stress during maize seed development can interfere with endosperm starch biosynthesis and reduce seed size, an important component of yield. Our objectives were to evaluate the direct influence of temperature during grain filling on kernel growth, carbohydrate accumulation, and corresponding endosperm metabolism. Kernels of maize were grown in vitro at 25�C until 15 or 16 days after pollination and then subjected to various temperatures for the remainder of their development. Mature kernel dry weight declined 45% in a linear fashion between 22 and 36�C. The rate of starch accumulation reached a maximum at approximately 32�C, and when measured at frequent intervals, declined only slightly with further temperature increase to 35�C. Reduced seed size resulted from an abbreviated duration of starch-related metabolism, which did not appear to be limited by endogenous sugars. Instead, a survey of 12 enzymes of sugar and starch metabolism indicated that ADP glucose pyrophosphorylase and soluble starch synthase were unique in displaying developmental peaks of activity which were compressed both in amount and time, similar to the effect of temperature on starch accumulation. We conclude that decreased starch synthesis in heat-stressed maize kernels results from a premature decline in the activity of these enzymes.


2020 ◽  
Vol 117 (52) ◽  
pp. 33177-33185
Author(s):  
Camila Ribeiro ◽  
Tracie A. Hennen-Bierwagen ◽  
Alan M. Myers ◽  
Kenneth Cline ◽  
A. Mark Settles

Endosperm starch synthesis is a primary determinant of grain yield and is sensitive to high-temperature stress. The maize chloroplast-localized 6-phosphogluconate dehydrogenase (6PGDH), PGD3, is critical for endosperm starch accumulation. Maize also has two cytosolic isozymes, PGD1 and PGD2, that are not required for kernel development. We found that cytosolic PGD1 and PGD2 isozymes have heat-stable activity, while amyloplast-localized PGD3 activity is labile under heat stress conditions. We targeted heat-stable 6PGDH to endosperm amyloplasts by fusing the Waxy1 chloroplast targeting the peptide coding sequence to the Pgd1 and Pgd2 open reading frames (ORFs). These WPGD1 and WPGD2 fusion proteins import into isolated chloroplasts, demonstrating a functional targeting sequence. Transgenic maize plants expressing WPGD1 and WPGD2 with an endosperm-specific promoter increased 6PGDH activity with enhanced heat stability in vitro. WPGD1 and WPGD2 transgenes complement the pgd3-defective kernel phenotype, indicating the fusion proteins are targeted to the amyloplast. In the field, the WPGD1 and WPGD2 transgenes can mitigate grain yield losses in high–nighttime-temperature conditions by increasing kernel number. These results provide insight into the subcellular distribution of metabolic activities in the endosperm and suggest the amyloplast pentose phosphate pathway is a heat-sensitive step in maize kernel metabolism that contributes to yield loss during heat stress.


2022 ◽  
Vol 52 (4) ◽  
Author(s):  
Wang Su ◽  
Guangji Ye ◽  
Yun Zhou ◽  
Jian Wang

ABSTRACT: Biosynthesis is the only source of potato starch which is an important raw material for food processing, modified starch and biomass energy. However, it is not clear about the evolution of starch synthesis with tuber development in potato. The present study evaluated the differences of starch synthesis and gelatinization properties of potato tubers with different starch content. Relative to cultivars of medium and low starch content, cultivars of high starch content showed significantly higher SBEII gene expression, AGPase and SSS enzyme activity, and total starch content after middle stage of starch accumulation, and had smaller average starch granule size during whole process of tuber development, and had higher pasting temperature before late stages of tuber growth, and had lower pasting temperature after middle stage of starch accumulation. Path analysis showed that, after middle stage of starch accumulation, effects on starch gelatinization of cultivars with high, medium and low starch content represented starch synthesis enzyme activity > starch accumulation > starch granule distribution > starch synthesis enzyme gene expression, starch synthesis enzyme gene expression > starch synthesis enzyme activity > starch accumulation > starch granule distribution, starch synthesis enzyme gene expression > starch granule distribution > starch synthesis enzyme activity > starch accumulation, respectively. In the study, phases existed in the starch biosynthesis of potato tuber, and the starch quality and its formation process were different among varieties with different starch content. The findings might contribute to starch application and potato industries.


2018 ◽  
Vol 10 (3) ◽  
pp. 484-490 ◽  
Author(s):  
Zulkarnain Zulkarnain ◽  
Neliyati Neliyati ◽  
Eliyanti Eliyanti

Pineapple propagation by lateral shoots, suckers or crowns is often confronted with limited number of regenerated seedlings and high diversity in flowering and fruit formation. In order to solve this problem, this study offer an alternative method by using tissue culture techniques. This study aimed to determine the effect of growth regulators on plantlet regeneration from bud slicing of pineapple cv. Tangkit. Four levels of 2.4-D (0.0, 0.001, 0.01 and 0.1 ppm) in combination with BA (0.0, 0.1, 1.0 and 10.0 ppm) were tested on solid MS medium. Cultures were incubated in total darkness for a week followed by transfer to 16-hour photoperiod. Results showed that explants treated with 2,4-D and/or BA succeeded in regenerating adventitious shoots. Average leaf number did not differ significantly among treatments (P = 0.60). Highest leaf number (2.99 ± 0.23) was obtained on medium with 0.01 ppm 2,4-D without BA, followed by 0.1 ppm 2,4-D without BA (2.85 ± 0.33). Meanwhile, roots were only formed on medium with 0.1 ppm 2.4-D without BA (4.2 ± 0.37 per shoot). Thus, complete plantlets were regenerated only on medium supplemented with 0.1 ppm 2,4-D without BA. The growth of plantlets was relatively uniform, and plantlet acclimatization succeeded 100% on Jiffy pots. The finding of optimum concentration of 2.4-D and BA in this study is important to develop standard protocol for in vitro propagation of pineapple cv. Tangkit. Thus, the benefit of producing seeds in large quantities and relatively uniform in growth is made possible through tissue culture technique.


2021 ◽  
Vol 21 (1) ◽  
pp. 54-57
Author(s):  
Dyah Nuning Erawati ◽  
Yusriatul Mawaddah ◽  
Siti Humaida ◽  
Irma Wardati

Vanilla has a potential to be developed through tissue culture techniques to anticipate the limitations of the parent plant as a source of planting material. The in vitro propagation ability of vanilla shoots needs to be controlled with the regulation of Kinetin and Benzyl Amino Purines. The interests of this study are 1) analysis of the response of vanilla explants at several Kinetin concentrations; 2) analysis of the response of vanilla explants at several concentrations of BAP and 3) analysis of the interaction of Kinetin and BAP on the response of vanilla explants to form shoot multiplication. The research was conducted at the Tissue Culture Laboratory Politeknik Negeri Jember from June to December 2020 using a factorial Completely Randomized Design (CRD). Factor 1 was the Kinetin concentration of 0.0, 1.0, 2.0 mg.L-1 and the second factor was the concentration of BAP 0.5, 1.5, 2.5 mg.L-1. The results proved that the fastest shoot multiplication occurred on MS medium + Kinetin 2 mg.L-1 with a mean of 8.7 days after inoculation. The mean number of shoots was 7.6 shoots/explant with the highest average wet weight of 0.9 grams/explant at the addition of BAP 1.5 mg. L-1 at measurement 70 days after inoculation.


Jurnal BIOMA ◽  
2014 ◽  
Vol 10 (1) ◽  
pp. 34
Author(s):  
Febrina Ariyanti ◽  
Christiani Tumilisar ◽  
Rossa Yunita

Abstract Cashew (Anacardium occidentale L.) is a plant with high economic value. Conventional propagation of this plant still has obstacles, so an alternative techniques using tissue culture could be tried. One of the factors that determine the success of tissue culture techniques is the type and concentration of growth regulators was used. Growth regulator which have effect on shoot elongation is a cytokinin and gibberellin, this research tried to investigate the influence of combination cytokinin and gibberelin on in vitro shoot elongation of cashew. This research was conducted at BB-Biogen, Bogor on June-November 2010. The method in this research was to design experimental method with completely randomized design. The result was cytokinin could increase the length of shoots and quantity of shoots very well until 4 cm and quantity of shoot for 5. With the most effective cytokinin is zeatin of 5 mg/l.   Key words: Anacardium occidentale L., cytokinin, elongation of shoots, gibberelin


Sign in / Sign up

Export Citation Format

Share Document