The Effect of Carbon Ash on the Properties of Butadiene-Styrene Rubber (SBR) at Low Levels

2013 ◽  
Vol 746 ◽  
pp. 245-249 ◽  
Author(s):  
Xiang Hai Meng ◽  
Yi He Zhang ◽  
Lei Peng Liu ◽  
Zhi Lei Zhang

Carbon ash composed of mainly amorphous carbon and zinc oxide was used as the filler in the butadiene-styrene rubber (SBR) materials. In this paper, carbon ash was characterized by XRD. Furthermore, the composites were prepared by incorporating carbon ash into SBR matrix through the mechanical agitation and roll mixing technologies. Vulcanization characteristics and mechanical properties of SBR filled with carbon ash were investigated. The effect of coupling agent (KH550/KH570) on the mechanical properties was also discussed. The experimental results indicated that the tensile strength and modulus at 300% of SBR filled with carbon ash could be improved significantly.

2011 ◽  
Vol 217-218 ◽  
pp. 286-289 ◽  
Author(s):  
Xiang Hai Meng ◽  
Yi He Zhang ◽  
Fan Wang ◽  
Zhi Lei Zhang ◽  
Rui Zhang ◽  
...  

The wollastonite with fibrous structure can be used as the filler in the composite. In this paper, the composite was prepared by incorporating the wollastonite into butadiene styrene rubber (SBR) matrix through the mechanical agitation and roll mixing technologies. Mechanical properties of SBR filled with different amount of wollastonite content were studied and compared. It was shown that the mechanical properties of SBR filled with wollastonite could be improved significantly. The tensile strength and elongation at break were increased with the increase of the wollastonite. The tensile strength could be enhanced from 4.1MPa to 5.0MPa, and the elongation at break from 389% to 572%.


2015 ◽  
Vol 773-774 ◽  
pp. 949-953 ◽  
Author(s):  
Izni Syahrizal Ibrahim ◽  
Wan Amizah Wan Jusoh ◽  
Abdul Rahman Mohd Sam ◽  
Nur Ain Mustapa ◽  
Sk Muiz Sk Abdul Razak

This paper discusses the experimental results on the mechanical properties of hybrid fibre reinforced composite concrete (HyFRCC) containing different proportions of steel fibre (SF) and polypropylene fibre (PPF). The mechanical properties include compressive strength, tensile strength, and flexural strength. SF is known to enhance the flexural and tensile strengths, and at the same time is able to resist the formation of macro cracking. Meanwhile, PPF contributes to the tensile strain capacity and compressive strength, and also delay the formation of micro cracks. Hooked-end deformed type SF fibre with 60 mm length and fibrillated virgin type PPF fibre with 19 mm length are used in this study. Meanwhile, the concrete strength is maintained for grade C30. The percentage proportion of SF-PPF fibres are varied in the range of 100-0%, 75-25%, 50-50%, 25-75% and 0-100% of which the total fibre volume fraction (Vf) is fixed at 0.5%. The experimental results reveal that the percentage proportion of SF-PPF fibres with 75-25% produced the maximum performance of flexural strength, tensile strength and flexural toughness. Meanwhile, the percentage proportion of SF-PPF fibres with 100-0% contributes to the improvement of the compressive strength compared to that of plain concrete.


2011 ◽  
Vol 239-242 ◽  
pp. 1670-1673 ◽  
Author(s):  
Lei Li ◽  
Biao Ma ◽  
Qiang Li ◽  
Guo Jie Huang

Traditional lead brass is gradually prevented from application by many countries’ governments because lead does harm to human health and pollutes the environment. New types of environment-friendly lead-free brass with favorable machinability are urgently demanded in the electrical, electronics and plumping fields. Lead-free Mg-Sb brass was fabricated in present. Experimental results showed that when the content of Mg is 1.0wt%, Sb is 0.8wt% and Cu is 58.0~59.0wt%, the alloy’s mechanical properties and machinability are favorable for industry application. With the increase of the content of Sb, the machinability increased, while the mechanical properties decreased. Lots of Cu2Mg and Cu9Sb2 particles on the order of microns exist in the inner-grain and grain boundaries. These particles improve the machinability, however, lower the tensile strength and the elongation. A three-way pipe joint was successfully punched with the fabricated Mg-Sb brass bar, and this demonstrated that the fabricated Mg-Sb brass possesses favorable hot working property.


2014 ◽  
Vol 496-500 ◽  
pp. 317-321
Author(s):  
Shou Hai Wang ◽  
Jun Gao ◽  
Gu Ren Fei ◽  
Ping Zhang ◽  
Jun Huang ◽  
...  

Acrylonitrile-butadiene-styrene (ABS) / polymethyl methacrylate (PMMA) with the addition of maleic anhydride grafted polystyrene (KT-5) and polyolefin elastomer (POE) were melt processed in a co-rotating twin-screw extruder. The effect of KT-5 and POE content on the mechanical properties of ABS/PMMA was investigated. Experiment results indicate that KT-5 can improve the tensile strength and the composites are toughened effectively as the addition of POE. According to Orthogonal tests, it demonstrates that POE ha a greater effect on the blends than KT-5, and there exist no obvious interactivity between the two components.


2006 ◽  
Vol 324-325 ◽  
pp. 671-674
Author(s):  
Wang Xiang ◽  
Xiao Hua Xue

TiCp/ZA-12 composites have been fabricated by XDTM method and stirring-casting techniques. The tests for mechanical properties reveal that the tensile strength and strength increase with increasing fraction of TiC particles. When the fraction of TiC particles increase up to 10%, the tensile strength and yield strength are 390MPa and 340MPa, respectively and they increase by 11% and 17% than that of matrix respectively. From the analysis of fractography we can see that mixed fracture of cleavage fracture and dimple fracture exists in the TiCp/ZA-12 composites, and fractured particles are not found. Finally the fracture model of composites has been established based on the experimental results.


2010 ◽  
Vol 150-151 ◽  
pp. 762-765
Author(s):  
Ji Hu Wang ◽  
Hong Bo Liu ◽  
Shao Guo Wen ◽  
Yan Shen

Attapulgite (AT)/natural rubber (NR)/ styrene-butadiene rubber (SBR) nanocomposites have been prepared after attapulgite was modified by different coupling agent. The treatment of AT caused the adhesion between AT nanorods and the nature rubber/styrene-butadiene rubber was improved, which enhanced the tensile properties of the matrix. The tensile strength of composites attained 15.6 MPa after AT was modified by 3%wt Si-69 coupling with addition of 20 phr.


2014 ◽  
Vol 936 ◽  
pp. 1796-1800
Author(s):  
Peng Dang ◽  
Xiao Wei Zhang ◽  
Yun Wang ◽  
Qing Zhang ◽  
Chang Liang Li

The influence of annealing temperature on the microstructure, mechanical properties and corrosion resistant of cold rolling zirconium sheet were studied in the manuscript. The experimental results shown that the tensile strength and yield strength of zirconium sheet were decreased and the elongationwas raised with the raising of annealing temperature from 500 °C to 580 °C. The recrystallization are not happened in zirconium sheet at the annealing temperature of 500 °C. Zirconium sheet complete recrystallized and the strength and elongation get a well match at the annealing temperature of 540°C. Zirconium sheet also complete recrystallized at the annealing temperature of 580°C but the crystalline grain has the tendency of growing. The annealing temperature has no effect on the corrosion resistant of zirconium sheet.


2013 ◽  
Vol 32 (2) ◽  
pp. 163-169
Author(s):  
Josip Brnic ◽  
Goran Turkalj ◽  
Sanjin Krscanski

AbstractThis paper presents and analyzes the responses of non-alloy structural steel (1.0044) subjected to uniaxial stresses at high temperatures. This research has two important determinants. The first one is determination of stress-strain dependence and the second is monitoring the behavior of materials subjected to a constant stress at constant temperature over time. Experimental results refer to mechanical properties, elastic modulus, total elongations, creep resistance and Charpy V-notch impact energy. Experimental results show that the tensile strength and yield strength of the considered material fall when the temperature rises over 523 K. Significant decrease in value is especially noticeable when the temperature rises over 723 K. In addition, engineering assessment of fracture toughness was made on the basis of Charpy impact energy. It is visible that when temperature raises then impact energy increases very slightly.


2016 ◽  
Vol 723 ◽  
pp. 56-61 ◽  
Author(s):  
Zheng Hao Ge ◽  
Dan Ge Si ◽  
Yun Li Lan ◽  
Mei Nong Shi

Though there has been a large number of studies concerning the modification of wood plastic composite materials, there is still more to be done. This report aims to study the effect of the coupling agents (PP-g-MAH, silane, titanate) and compatibilizer(SBS) on the mechanical properties of straw flour/waste plastic composites. Straw flour, waste plastic, modifying agents and other additives were mixed evenly in a high speed mixing machine. And the mixed materials were compounded into the pelllets using the twin-screw extruder. Then the test specimens were prepared by the injection molding. The influence of 4% coupling agent (PP-g-MAH, silane, titanate) on the mechanical properties of straw flour/waste plastic composites was researched, and the most suitable coupling agent to the composites was obtained. In order to increase the toughness of the composite materials and to furthermore improve the comprehensive mechanical properties, the WPCs with different contents styrene butadiene styrene (SBS) were investigated. The experimental results showed that the coupling agent PP-g-MAH and the content was 4%, the mechanical properties of the composite materials were better; when SBS content was 5%, the maximum increases of tensile strength, flexural strength and impact strength of SBS modified WPCs were by 14.34%, 20.75%, 34.38% compared to those of neat WPCs respectively.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaojian Cao ◽  
Han Zhang ◽  
Jun Yu ◽  
Tianchong Yu ◽  
Yuxing Qing

Determination of the mechanical properties of rock containing pre-existing cracks under tension condition is of great significance to understand the failure process of rock in engineering. This paper presents the experimental results of sandstone containing pre-existing cracks under Brazilian compression. The characteristics of the microcracks were analyzed by a scanning electron microscope. The results show that the rock containing pre-existing cracks has an obvious anisotropic characteristic. When the crack inclination is 45°, the rock has the minimum tensile strength and the weakest axial deformation resistance.


Sign in / Sign up

Export Citation Format

Share Document