Scratch Resistance and Adhesion Properties of PEEK Coating Filled with h-BN Nanoparticles

2013 ◽  
Vol 747 ◽  
pp. 303-306 ◽  
Author(s):  
Jirasak Tharajak ◽  
Tippaban Palathai ◽  
Narongrit Sombatsompop

Effects of h-BN particles on mechanical properties and adhesion of semi-crystalline poly (ether-ether-ketone) (PEEK) coatings were studied. PEEK powder was mixed with various contents of h-BN nanoparticle in ethanol under ultrasonic mixing. As-mixed powders were sprayed onto low carbon steel substrate with thermal spray technique. The hardness, scratch hardness, specific scratch wear rate, prevailing deformation mechanisms and adhesion were obtained from scratch tests by varying the applied load. The damage geometry on scratched polymer surfaces and scratch wear volume loss were examined using scanning electron microscope (SEM) and surface profilometer, respectively. The results indicated that the addition of h-BN content improved the hardness of the composite. In addition, the specific scratch wear rate and the adhesion between PEEK coatings and substrate decreased with increasing h-BN content. The poor adhesion resulted from the reductions of flow-ability and viscosity between PEEK and substrate caused by heat dissipation from the h-BN particles.

10.30544/338 ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 71-81
Author(s):  
Chijioke Okechukwu ◽  
Olurotimi Akintunde Dahunsi ◽  
Peter Kayode Oke ◽  
Isiaka Oluwole Oladele ◽  
Mohammed Dauda

Extension of service lives of critical machine components subjected to wear is possible through application of hardfacing alloys. In this work, two hardfacing alloys were produced based on the mass ratios of 2: 1: 1 and 7: 1.5: 1.5 for Fe: Mn: Cr by sand and open permanent mold casting processes, respectively. XRD analysis of both samples showed the prominent presence of (Mn, Cr)23C6, (Fe, Mn, Cr)7C3, Cr3C2, Fe3C2 and Fe4C carbides. Hӓgg carbide was prevalent in the SEM microstructural analysis of the sand cast sample, while cementite dominated the permanent mold cast sample. The average hardness values, impact energies absorbed and wear volumes of the samples produced with their respective charge mass ratios are 567 HV, 30 J and 0.131 cm3 for 2: 1: 1 ratio and 592 HV, 29.5 J and 0.085 cm3 for the 7: 1.5: 1.5 ratio. For service life applications as jaws, rolls, mantles, and concaves in crushers, the latter was recommended for manual metal arc welding to low carbon steel substrate because of its higher hardness, lower wear volume and cheaper alloy cost.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3658
Author(s):  
Auezhan Amanov ◽  
Joo-Hyun Choi ◽  
Young-Sik Pyun

In this study, the effects of ultrasonic nanocrystal surface modification (UNSM) technology on the tribological properties and scratch-induced adhesion behavior of a heat-resistant KHR 45A steel cracking tube, which is used for the pyrolysis process, were investigated. The main objective of this study is to investigate the effects of pre- and post-carburizing UNSM treatment on the tribological and adhesion performances of carburized domestic KHR 45A (A) steel and to compare the results with the existing carburized Kubota-made KHR 45A steel (B). A carburizing process was carried out on the polished and UNSM-treated KHR 45A steel substrates, which were cut out from the cracking tube, at 300 °C heat exposure for 300 h. The thickness of the carburizing layer was about 10 μm. UNSM technology was applied as pre- and post-carburizing surface treatment; both reduced the friction coefficient and wear rate compared to that of the carburized KHR 45A steel substrate. It was also found that the application of UNSM technology increased the critical load, which implies the improvement of adhesion behavior between the carburizing layer and the KHR steel substrate. The application of UNSM technology as pre- and post-carburizing surface treatment could help replace carburized Kubota-made KHR 45A steel (B) thanks to the improved tribological performance, enhanced scratch resistance, load bearing capacity, and adhesion of domestic KHR 45A (A) steel.


2013 ◽  
Vol 734-737 ◽  
pp. 2269-2272
Author(s):  
Hong Mei Zhu ◽  
Shu Mei Lei ◽  
Tong Chun Kuang

In this paper, a low carbon steel was used as the substrate to prepare the carbon nanostructural materials by the oxygen-acetylene flame method. The experimental results show that the composite products including nodular carbon nanoparticles and amorphous carbon were obtained on the substrate after a mechanical polishing pretreatment. Comparatively, the short tubular carbon nanofibers with the diameter of around 100 nm were deposited on the substrate pretreated by dipping in the concentrated nitric acid solution. The possible mechanism for the growth of such carbon nanofibers was discussed.


2021 ◽  
Vol 886 ◽  
pp. 168-174
Author(s):  
Mohanad N. Al-Shroofy ◽  
Hanna A. Al-Kaisy ◽  
Rabab Chalaby

Powder spray coating was used for many applications such as paint decoration and protection against corrosive environments. The electrostatic spray method is used to lower the manufacturing cost and the environmental effect during the production process. It is done by electrostatic device and spray gun to create a layer on the substrate to play a protective role. Different dry powders were mixed to form a composite mixture consisted of Al2O3 and SiC or ZrSiO4 with Al powder as a binder. The powders mixture was deposited by electrostatic spray technique with a high voltage of 15 kV on a low carbon steel substrate of (40 x 10 x 4) mm in dimensions. Two groups of mixtures were used to form the coating layers. Powders of Al2O3 with (20 and 40) weight percent (wt%) of SiC as the first group and (20 and 40) wt% of ZrSiO4 as the second group were used. 5 wt% of Al powder was added as a binder, and the samples were heat treated at 900 C° for 2 hours. A detailed characterization of the composite coating layers was performed using XRD, SEM, and EDX, as well as, micro-hardness measurements. The obtained surface composite layers were smooth and having good particle distribution which leads to enhance roughness values (Ra). Furthermore, the hardness increased with increasing the amount of carbide and zirconia, and the obtained layers show no presence of defects or cracks.


2012 ◽  
Vol 57 (2) ◽  
pp. 517 ◽  
Author(s):  
M. Żelechower ◽  
J. Kliś ◽  
E. Augustyn ◽  
J. Grzonka ◽  
D. Stróż ◽  
...  

The Microstructure of AnnealedGalfanCoating on Steel SubstrateThe commercially availableGalfancoating containing 5-7wt.% of Al deposited on the low carbon steel substrate by hot dipping has been examined with respect to the microstructure of the coating/substrate interface area. The application of several experimental techniques (SEM/EDS, XRD, TEM/AEM/EDS/ED) allowed demonstrating the two-phase structure of the alloy coating in non-treated, commercially availableGalfansamples: Zn-rich pre-eutectoidηphase grains are surrounded by lamellar eutectics ofβ-Al andη-Zn. The transition layer between the alloy coating and steel substrate with the considerably higher Al content (SEM/EDS, TEM/EDS) has been found in both non-treated and annealed samples (600°C/5 minutes). Only the monoclinic FeAl3Znxphase however was revealed in the annealed sample (TEM/electron diffraction) remaining uncertain the presence of the orthorhombic Fe2Al5Znxphase, reported by several authors.


Author(s):  
R Raveen ◽  
J Yoganandh ◽  
S SathieshKumar ◽  
N Neelakandeswari

Cobalt–graphene nanocomposite coatings possess unique mechanical and tribological properties which attract researchers to explore its potential for various industrial applications. This research work presents the investigation on cobalt–graphene nanocomposite coatings, with two different graphene compositions cobalt–graphene (0.15 and 0.45 wt%) prepared by pulsed electrodeposition from aqueous bath involving cobalt chloride, trisodium citrate, and citric acid on low carbon steel substrate. Studies on coating morphology, microhardness, tribological characteristics such as wear and corrosion for the cobalt–graphene nanocomposite coatings were reported. Cobalt–graphene (0.45 wt%) nanocomposite coating which exhibits low wear rate in all load conditions due to the self-lubricating property of graphene and cobalt–graphene (0.15 wt%) nanocomposite coating shows higher corrosion resistance due to its layered cauliflower surface morphology.


1997 ◽  
Vol 37 (5) ◽  
pp. 512-518 ◽  
Author(s):  
Hiroyuki Ohtsubo ◽  
Hideki Sogo ◽  
Kiyomichi Nakai ◽  
Yasuya Ohmori

Sign in / Sign up

Export Citation Format

Share Document