N-Allyl-N-Methyl Piperidinium Bis(Trifluoromethanesulfonyl) Imide as a Co-Solvent in Li-Ion Batteries

2013 ◽  
Vol 750-752 ◽  
pp. 1194-1198 ◽  
Author(s):  
Jun Hui Zhou ◽  
Cui Hua Li ◽  
Bin Bin Yang

Mixtures of an ionic liquid (IL) with organic solvents and a lithium salt have been studied in order to develop new electrolytes for lithium-ion cells with enhanced safety profiles. In this work, N-allyl-N-methylpiperidinium bis (trifluoromethanesulfonyl) imide (PP1ATFSI) was synthesized and characterized to exhibit high decomposition temperature and wide electrochemical stability window. The evaluation of the coin cell LiFePO4/Li with the mixed electrolyte based on PP1ATFSI with 0.35mol/kg LiTFSI, and 30 wt% VC/DMC (1:1) shows a nice reversibility and cycle performances. All above prove that PP1ATFSI is one of the most promising safety electrolytes of Li-ion battery.

Recycling ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 35
Author(s):  
Agnieszka Sobianowska-Turek ◽  
Weronika Urbańska ◽  
Anna Janicka ◽  
Maciej Zawiślak ◽  
Jędrzej Matla

The automotive industry is one of the fastest-growing sectors of the modern economy. Growing customer expectations, implementing solutions related to electromobility, and increasingly stringent legal restrictions in the field of environmental protection, determine the development and introduction of innovative technologies in the field of car production. To power the most modern vehicles that include electric and hybrid cars, packages of various types of lithium-ion cells are used, the number of which is constantly growing. After use, these batteries, due to their complex chemical composition, constitute hazardous waste that is difficult to manage and must be recycled in modern technological lines. The article presents the morphological characteristics of the currently used types of Li-ion cells, and the threats to the safety of people and the environment that may occur in the event of improper use of Li-ion batteries and accumulators have been identified and described on the basis of the Regulation of the European Parliament and Council (EC) No. 1272/2008 of 16 December 2008 and No. 1907/2006 of 18 December 2006 on the classification, labeling and packaging of substances and mixtures and the registration, evaluation, authorization and restriction of chemicals (REACH), establishing the European Chemicals Agency.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1074 ◽  
Author(s):  
Yu Miao ◽  
Patrick Hynan ◽  
Annette von Jouanne ◽  
Alexandre Yokochi

Over the past several decades, the number of electric vehicles (EVs) has continued to increase. Projections estimate that worldwide, more than 125 million EVs will be on the road by 2030. At the heart of these advanced vehicles is the lithium-ion (Li-ion) battery which provides the required energy storage. This paper presents and compares key components of Li-ion batteries and describes associated battery management systems, as well as approaches to improve the overall battery efficiency, capacity, and lifespan. Material and thermal characteristics are identified as critical to battery performance. The positive and negative electrode materials, electrolytes and the physical implementation of Li-ion batteries are discussed. In addition, current research on novel high energy density batteries is presented, as well as opportunities to repurpose and recycle the batteries.


Author(s):  
A. Mancha

Today the United States is heavily reliant on the lithium-ion battery as most portable devices and electronics run on it. Current innovations are also looking on how to maximize it on the grid and transportation. This paper will look at three sovereign states and their current initiatives on Li-ion battery recycling: US, European Union, and China. The term initiative is used loosely as the information is not permanent in most policies or plans. Li-ion battery recycling initiatives are crucial to look at because used and wasted Li-ion batteries can disrupt public health and Li-ion batteries are expected to be a factor for effective material supply for future battery production especially in transportation, like the Tesla Roadster.


Batteries ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 51
Author(s):  
Manh-Kien Tran ◽  
Andre DaCosta ◽  
Anosh Mevawalla ◽  
Satyam Panchal ◽  
Michael Fowler

Lithium-ion (Li-ion) batteries are an important component of energy storage systems used in various applications such as electric vehicles and portable electronics. There are many chemistries of Li-ion battery, but LFP, NMC, LMO, and NCA are four commonly used types. In order for the battery applications to operate safely and effectively, battery modeling is very important. The equivalent circuit model (ECM) is a battery model often used in the battery management system (BMS) to monitor and control Li-ion batteries. In this study, experiments were performed to investigate the performance of three different ECMs (1RC, 2RC, and 1RC with hysteresis) on four Li-ion battery chemistries (LFP, NMC, LMO, and NCA). The results indicated that all three models are usable for the four types of Li-ion chemistries, with low errors. It was also found that the ECMs tend to perform better in dynamic current profiles compared to non-dynamic ones. Overall, the best-performed model for LFP and NCA was the 1RC with hysteresis ECM, while the most suited model for NMC and LMO was the 1RC ECM. The results from this study showed that different ECMs would be suited for different Li-ion battery chemistries, which should be an important factor to be considered in real-world battery and BMS applications.


Processes ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 38 ◽  
Author(s):  
Jeongeun Son ◽  
Yuncheng Du

The Lithium-ion battery (Li-ion) has become the dominant energy storage solution in many applications, such as hybrid electric and electric vehicles, due to its higher energy density and longer life cycle. For these applications, the battery should perform reliably and pose no safety threats. However, the performance of Li-ion batteries can be affected by abnormal thermal behaviors, defined as faults. It is essential to develop a reliable thermal management system to accurately predict and monitor thermal behavior of a Li-ion battery. Using the first-principle models of batteries, this work presents a stochastic fault detection and diagnosis (FDD) algorithm to identify two particular faults in Li-ion battery cells, using easily measured quantities such as temperatures. In addition, models used for FDD are typically derived from the underlying physical phenomena. To make a model tractable and useful, it is common to make simplifications during the development of the model, which may consequently introduce a mismatch between models and battery cells. Further, FDD algorithms can be affected by uncertainty, which may originate from either intrinsic time varying phenomena or model calibration with noisy data. A two-step FDD algorithm is developed in this work to correct a model of Li-ion battery cells and to identify faulty operations in a normal operating condition. An iterative optimization problem is proposed to correct the model by incorporating the errors between the measured quantities and model predictions, which is followed by an optimization-based FDD to provide a probabilistic description of the occurrence of possible faults, while taking the uncertainty into account. The two-step stochastic FDD algorithm is shown to be efficient in terms of the fault detection rate for both individual and simultaneous faults in Li-ion batteries, as compared to Monte Carlo (MC) simulations.


Author(s):  
Chongye Wang ◽  
Yong Wang ◽  
Lin Li ◽  
Hua Shao ◽  
Changxu Wu

Electric vehicle (EV) technologies have received great attention due to the potential contributions to relieving the energy dependence on petroleum and reducing carbon dioxide emissions. The advancement of EV technologies greatly relies on the development of battery technologies. Lithium-ion (Li-ion) batteries have recently become the main choice as the power source for major EV manufacturers. Previous research on EV Li-ion batteries is mainly focused on materials and chemical properties of single cells, while the effects of manufacturing processes on the performance of entire battery packs have almost been neglected. In practice, EV batteries are used in packs containing multiple cells, which may not be ideally manufactured. This research proposes a novel modeling method for analyzing the effects of manufacturing processes on the dynamics of EV Li-ion battery packs. The method will help engineers gain a deeper understanding of the roles of manufacturing processes in improving EV Li-ion battery performance.


2010 ◽  
Vol 72 ◽  
pp. 325-330
Author(s):  
Tomonobu Tsujikawa ◽  
K. Yabuta ◽  
T. Matsushita ◽  
M. Arakawa ◽  
K. Hayashi

In addition to cost and lifetime, important factors in using lithium-ion (Li-ion) batteries as a backup power supply in telecommunication applications are safety and the flatness of discharge voltage to maintain compatibility with existing systems based on lead storage batteries. We have been researching Li-ion batteries using manganese spinel as cathode material from the viewpoints of flat discharge voltage and thermal stability in the event of overcharging or internal short-circuits. The safety of the Li-ion battery was improved by adding a phosphazene flame retardant to the electrolytic solution and cathode of the battery. Then, with the aim of extending battery lifetime, some of the manganese in the cathode was replaced by another metallic element, which showed favorable results.


Author(s):  
Peyman Taheri ◽  
Scott Hsieh ◽  
Majid Bahrami

Lithium-ion (Li-ion) batteries are favored in hybrid-electric vehicles and electric vehicles for their outstanding power characteristics. In this paper the energy loss due to electrical contact resistance (ECR) at the interface of electrodes and current-collector bars in Li-ion battery assemblies is investigated for the first time. ECR is a direct result of contact surface imperfections and acts as an ohmic resistance at the electrode-collector joints. ECR is measured at electrode connections of a sample Li-ion battery, and a straightforward analysis is presented to evaluate the relevant energy loss. Through the experiments, it is observed that ECR is an important issue in energy management of Li-ion batteries. Effects of surface imperfection, contact pressure, joint type, collector bar material, and interfacial materials on ECR are highlighted. The obtained data show that in the considered battery, the energy loss due to ECR can be as high as 20% of the total energy flow in and out of the battery under normal operating conditions. However, ECR loss can be reduced to 6% when proper joint pressure and/or surface treatment are used. A poor connection at the electrode-collector interface can lead to a significant battery energy loss as heat generated at the interface. At sever conditions, heat generation due to ECR might cause serious safety issues, thermal runaway, sparks, and even melting of the electrodes.


2019 ◽  
Vol 22 (1) ◽  
Author(s):  
Linh Thi-My Le ◽  
Thanh Duy Vo ◽  
Hoang Van Nguyen ◽  
Quan Phung ◽  
Man Van Tran ◽  
...  

Introduction: Ionic liquids (ILs) have become a prospective candidate to replace the conventional electrolytes based on the volatile organic-solvents in lithium-ion batteries. However, the drawbacks of high viscosity and low ionic conductivity have restricted the high rate capacity and energy density in practical batteries. With the aims to resolve these problems and design a safe electrolytes with high electrochemical stability, mixtures of ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide (EMITFSI) with different amounts of ethylene carbonate (EC) was prepared and characterized as electrolytes for Li-ion batteries. Methods: In this work, we investigated four factors to demonstrate the performance of EMITFSI as electrolytes for Li-ion batteries. These factors include: thermal properties of mixed electrolytes (Mettler Toledo DSC1 Star -DSC, Q500-TGA), Conductivity (HP- AC impedance spectroscopy), Viscosity (Ostwald viscometer CANNON) and electrochemical window (cyclic voltammetry-MGP2 Biologic Instrument). All experiments were repeated three times with the exception of TGA-DSC methods. Results: The study indicated that 20 % wt. ethylene carbonate (EC) when mixed with EMITFSI could significantly decrease the electrolyte viscosity while improving ionic conductivity and maintain similar electrochemical stability as pure ionic liquid. Lithium diffusion coefficient of mixed electrolytes was lower than commercial electrolytes based on conventional solvents, however, the thermal stability was enhanced. Conclusion: EMITFSI can be used to replace conventional carbonate-based liquids as a high-performance electrolyte for Li-ion batteries.  


Author(s):  
Lt. Col Pankaj Kushwaha

Abstract: Li-ion battery technology has become very important in recent years as these batteries show great promise as power source. They power most of today’s portable devices and seem to overcome the psychological barriers against the use of such high energy density devices on a larger scale. Lithium-ion batteries are being widely used in military applications for over a decade. These man portable applications include tactical radios, thermal imagers, ECM, ESM, and portable computing. In the next five years, due to the rapid inventions going on in li-ion batteries, the usage of lithium batteries will further expand to heavy-duty platforms, such as military vehicles, boats, shelter applications, aircraft and missiles. The aim of this paper is to review key aspects of Li-ion batteries, the basic science behind their operation, the most relevant components, anodes, cathodes, electrolyte solution as well as important future directions for R&D of advanced Li-ion batteries for demanding use in Indian Armed Forces which are deployed in very harsh conditions across the country. Keywords: Li-ion Battery, NiCd battery


Sign in / Sign up

Export Citation Format

Share Document