Study on Water Stability of Evotherm® Warm Asphalt Mixture

2013 ◽  
Vol 753-755 ◽  
pp. 819-822
Author(s):  
Kui Li ◽  
De Dong Guo

AC-13C asphalt mixtures were mixing with 3% Evotherm® content and the optimal compaction temperature was determined according to test results of specimens formed at 4 different compaction temperatures by Marshall method. The general water stability tests and Hamburg wheel-tracking device (HWTD) were used to test the water stability of 4 kinds of asphalt mixtures, which were ordinary asphalt mixture, Evotherm® asphalt mixture without adding any anti-stripping agent, Evotherm® asphalt mixture adding liquid anti-stripping agent and Evotherm® asphalt mixture adding hydrated lime. Test results shows that the optimal compaction temperature is about 125°C; and compared to ordinary asphalt mixture, the long-term water stability of Evotherm® asphalt mixture is obviously poor caused by the lower compaction temperature; the addition of either liquid anti-stripping agent or hydrated lime improve the water stability to a great extent; comparatively speaking, addition of hydrated lime is the optimum measure to improve the water stability of Evotherm® warm mixture asphalt.

2013 ◽  
Vol 798-799 ◽  
pp. 178-181
Author(s):  
Jing Ya Chen ◽  
Kun Wang

To study water stability of Sasobit warm mix drainage asphalt (WMDA) and improve it, OGFC-13 WMA is primarily prepared with polyester fibre and Sasobit. According to the test results of specimens, formed at 5 different compaction temperatures by marshall tests, the optimal compaction temperature is determined. Then, general water stability tests were used to test the water stability performance of 4 kinds of asphalt mixtures, which were porous asphalt mixture of hot mix (OGFC-1),Sasobit WMDA without any anti-stripping agents (OGFC-2), Sasobit WMDA added hydrate lime (OGFC-3) and Sasobit WMDA added hydrated lime with quick lime (OGFC-4).Test results show that optimal compaction temperature is 150°C; water stability order (OGFC-3>OGFC-1>OGFC-2>OGFC-4) shows that using hydrated lime has beneficial yet limited effects to it. Hydrated lime with quick lime should be avoided for its adverse effect.1.5% hydrated lime shows best water stability.


2013 ◽  
Vol 668 ◽  
pp. 292-296
Author(s):  
Ya Li Ye ◽  
Chuan Yi Zhuang ◽  
Jia Bo Hu

With the early asphalt pavements have been into the stage of medium maintenance or overhaul, recycling is a very important way for waste asphalt mixtures. A sample was taken in the expressway from Huhhot to Baotou, and the waste mixtures were extracted from field and sieved; so that the new aggregates can be determined and mix design was carried. With the aid of the penetration, the softening point and the viscosity in 135°C test, the quantity of the regenerant and the asphalt content were ascertained. Through the high temperature stable performance, the anti-low temperature performance, the water stability and the Hamburg wheel-tracking test, the appropriate gradation and the optimum asphalt content were determined. The test results showed that the pavement performance of the waste asphalt mixture was enhanced obviously with hot in-place recycling, and it has achieved technical parameters for old asphalt mixture.


2013 ◽  
Vol 639-640 ◽  
pp. 346-349
Author(s):  
Zhao Bin Xie

In order to verify the characterization degree of water stability, research selects some clay content aggregate retrieved from road engineering field to produce rubber asphalt mixture and carry out the water stability test. Test results show that clay content in aggregate has a significant influence on the water stability of rubber asphalt mixture. When the content of clay in aggregate less than 1%, the influence on water stability is smaller; when the clay content exceeds 2%, the decay rate on water stability performance and long term properties obviously speed up, resulted in serious water damage.


2013 ◽  
Vol 842 ◽  
pp. 22-26
Author(s):  
Wen Feng Yang

The mechanism that hydrated lime can improve water stability of asphalt mixture was analyzed through contrasting the performance of hydrated lime and ordinary limestone ore filler. The test results indicated that hydrated lime can obviously improve the water stability of asphalt mixture.


2015 ◽  
Vol 10 (4) ◽  
pp. 309-315 ◽  
Author(s):  
Ivica Androjić ◽  
Sanja Dimter

Compaction of hot mix asphalt is influenced by several factors; some related to the environment, some determined by mix and structural design and some by contractor during construction. The temperature of asphalt mixture has the biggest influence on the compaction of asphalt mixtures and their properties. The temperature of asphalt mixture affects viscosity of bitumen and achievement of the maximum density of asphalt mixture. This paper describes a laboratory study on the effects of different installation temperatures on the physico-mechanical properties of specimens of asphalt mixtures: stability, Marshall Quotient (stiffness), density, voids and voids filled with asphalt. By regression analysis of the test results the correlation of certain properties of asphalt mix and compaction temperatures was established. For all the models observed, the coefficients of determination are very high and indicate very solid links. The obtained research results indicate a pronounced effect of compaction temperature on each tested property of asphalt mix.


2000 ◽  
Vol 1723 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Bouzid Choubane ◽  
Gale C. Page ◽  
James A. Musselman

Findings are summarized from an investigation performed to evaluate the suitability of a wheel-tracking device known as the asphalt pavement analyzer (APA) for assessing the rutting potential of asphalt mixes. The evaluation process consisted of correlating the APA’s predicted rutting with known field measurements. The correlation between beam and gyratory samples and the testing variability were also investigated. In addition, the APA test results were compared with those obtained using the Georgia loaded-wheel tester. The findings of this investigation indicated that the APA may be an effective tool to rank asphalt mixtures in terms of their respective rut performance. However, for each mixture type, the APA testing variability was significant between tests and between the three testing locations within each test. Differences in rut measurements of up to 4.7 and 6.3 mm were recorded for beam and gyratory samples, respectively. Therefore, using the APA as a clear pass-or-fail criterion for performance prediction purposes of asphalt mixtures may not be appropriate at this time. It should be noted that these findings are based on data collected on three mixes. Therefore, it is suggested that the APA testing variability (testing and testing locations within the device) be further assessed with a wider range of mixtures. The intent of such an assessment should not only be to correlate the APA results with field data but also to develop potential pass-or-fail limits and procedures.


2007 ◽  
Vol 13 (4) ◽  
pp. 307-315 ◽  
Author(s):  
Piotr Radziszewski

Permanent deformations, primarily in the form of ruts, are one of the basic asphalt pavement damages impairing its service properties. Application of appropriate asphalt mixtures and binder modification are effective methods for improving asphalt courses resistance. While being manufactured, stored, fitted into a road pavement and during long term service, bitumen binders and asphalt mixtures are subject to continuous unfavourable ageing processes during which pavement courses characteristics change considerably, resistance to permanent deformations being among them. This article presents rut and dynamic creep test results of concrete, SMA (stone mastic asphalt), MNU (thin courses of non‐continuous grain mixtures), Superpave mixture and porous asphalt mixture of two air void content percentages: 15 %, 20 %. Asphalt concrete mixtures, MNU's and porous asphalt mixtures contained elastomer, plastomer and fine rubber modified binders. Samples for laboratory rut tests were made by slab compaction because this method, as the author's previous research had shown, was the closest to ‘in‐situ’ conditions. Resistance to permanent deformations of the examined specimens was evaluated before aging, after technological aging (short term ageing) and after service ageing (long‐term ageing). The test results show that resistance to permanent deformations depends on the kind of asphalt mixture and binder applied. Concrete asphalts with fine rubber modified bitumens and concrete asphalts with 7 % polymer modified binders as well as SMA's and Superpave mixtures with unmodified binders appeared to be most resistant to permanent deformations after a long‐term laboratory ageing. It was proved that the overall evaluation of resistance to permanent deformations could be obtained by rut and creep testing of asphalt mixtures exposed to short‐ and long‐term ageing. Simultaneous determining 4 parameters: maximum rut depth after short‐term ageing, rutting coefficient after operational ageing, stiffness creeping modulus after long‐term ageing and cumulated deformation after short‐term ageing, facilitates full characteristics of modified asphalt mixes designed to be built in the wearing course of a road pavement.


2017 ◽  
Vol 67 (328) ◽  
pp. 138 ◽  
Author(s):  
A. P. Pérez-Fortes ◽  
M. J. Varas-Muriel ◽  
P. Castiñeiras

The asphalt surface layer is the most exposed to weather and traffic conditions on roads, especially those subjected to winter maintenance. Therefore, a deep knowledge of the mechanisms which can damage this layer is necessary to improve its design, construction and long-term use. With this purpose, two types of asphalt mixtures used on roads from NW Spain were subjected to durability tests (freezing-thaw and thermal-stress) with a saturated NaCl solution. After the durability tests, a wheel tracking test was performed on the samples, and the resultant material was analyzed by optical polarized light and fluorescence microscopy. This analysis showed that the binder-aggregate low adhesion was the main responsible of the asphalt mixture damage. This damage was concentrated in the aggregates because the binder acted as an impermeable wall. Consequently, the NaCl solution penetrated and degraded the aggregates quickly and strongly.


Author(s):  
Moses Akentuna ◽  
Louay N. Mohammad ◽  
Sanchit Sachdeva ◽  
Samuel B. Cooper ◽  
Samuel B. Cooper

Moisture damage of asphalt mixtures is a major distress affecting the durability of asphalt pavements. The loaded wheel tracking (LWT) test is gaining popularity in determining moisture damage because of its ability to relate laboratory performance to field performance. However, the accuracy of LWT’s “pass/fail” criteria for screening mixtures is limited. The objective of this study was to evaluate the capability of the LWT test to identify moisture susceptibility of asphalt mixtures with different moisture conditioning protocols. Seven 12.5 mm asphalt mixtures with two asphalt binder types (unmodified PG 67-22 and modified PG 70-22), and three aggregate types (limestone, crushed gravel, and a semi-crushed gravel) were utilized. Asphalt binder and mixture samples were subjected to five conditioning levels, namely, a control; single freeze–thaw-; triple freeze–thaw-; MiST 3500 cycles; and MiST 7000 cycles. Frequency sweep at multiple temperatures and frequencies, and multiple stress creep recovery tests were performed to evaluate asphalt binders. LWT test was used to evaluate the asphalt mixture samples. Freeze–thaw and MiST conditioning resulted in an increase in stiffness in the asphalt binders as compared with the control. Further, freeze–thaw and MiST conditioning resulted in an increase in rut depth compared with the control asphalt mixture. The conditioning protocols evaluated were effective in exposing moisture-sensitive mixtures, which initially showed compliance with Louisiana asphalt mixture design specifications.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Sun Min ◽  
Yufeng Bi ◽  
Mulian Zheng ◽  
Sai Chen ◽  
Jingjing Li

The energy consumption and greenhouse gas emission of asphalt pavement have become a very serious global problem. The high-temperature stability and durability of polyurethane (PU) are very good. It is studied as an alternative binder for asphalt recently. However, the strength-forming mechanism and the mixture structure of the PU mixture are different from the asphalt mixture. This work explored the design and performance evaluation of the PU mixture. The PU content of mixtures was determined by the creep slope (K), tensile strength ratios (TSR), immersion Cantabro loss (ICL), and the volume of air voids (VV) to ensure better water stability. The high- and low-temperature stability, water stability, dynamic mechanical property, and sustainability of the PU mixture were evaluated and compared with those of the stone matrix asphalt mixture (SMA). The test results showed that the dynamic stability and bending strain of the PU mixture were about 7.5 and 2.3 times of SMA. The adhesion level of PU and the basalt aggregate was one level greater than the limestone, and basalt aggregates were proposed to use in the PU mixture to improve water stability. Although the initial TSR and ICL of PU mixture were lower, the long-term values were higher; the PUM had better long-term water damage resistance. The dynamic modulus and phase angles (φ) of the PU mixture were much higher. The energy consumption and CO2 emission of the PU mixture were lower than those of SMA. Therefore, the cold-mixed PU mixture is a sustainable material with excellent performance and can be used as a substitute for asphalt mixture.


Sign in / Sign up

Export Citation Format

Share Document