scholarly journals Influence of compaction temperature on the properties of Marshall specimens

2015 ◽  
Vol 10 (4) ◽  
pp. 309-315 ◽  
Author(s):  
Ivica Androjić ◽  
Sanja Dimter

Compaction of hot mix asphalt is influenced by several factors; some related to the environment, some determined by mix and structural design and some by contractor during construction. The temperature of asphalt mixture has the biggest influence on the compaction of asphalt mixtures and their properties. The temperature of asphalt mixture affects viscosity of bitumen and achievement of the maximum density of asphalt mixture. This paper describes a laboratory study on the effects of different installation temperatures on the physico-mechanical properties of specimens of asphalt mixtures: stability, Marshall Quotient (stiffness), density, voids and voids filled with asphalt. By regression analysis of the test results the correlation of certain properties of asphalt mix and compaction temperatures was established. For all the models observed, the coefficients of determination are very high and indicate very solid links. The obtained research results indicate a pronounced effect of compaction temperature on each tested property of asphalt mix.

2017 ◽  
Vol 12 (1) ◽  
pp. 30-37 ◽  
Author(s):  
Tran Thanh Nhat ◽  
Osamu Takahashi

Simple indices easily help to evaluate a performance of hot mix asphalt mixtures. This study aimed to develop a simple workability index and rutting resistance index for wearing course mixtures. Seven aggregate gradations were prepared to investigate dense, coarse, and fine-graded hot mix asphalt mixtures. The study used the Marshall compactor to fabricate specimens. The Superpave Gyratory Compaction was employed to measure the workability of the seven blends, namely the workability energy parameter of asphalt mixtures. The study also conducted Wheel Tracking Test to evaluate rutting resistance of those mixtures. The results showed a strong relationship between the workability index and the workability energy of hot mix asphalt mixtures, namely increasing the workability energy of mixtures with increasing the workability index value. The workability energy value of an asphalt mixture may be high when the area of continuous maximum density for a proportion of stone, which illustrates a degree of far away from the Fuller maximum density line, is low. Moreover, the rutting resistance index correlated well with rutting resistance of the hot mix asphalt mixtures.


2011 ◽  
Vol 255-260 ◽  
pp. 3249-3253
Author(s):  
Hui Dou ◽  
Bo Li ◽  
Wen Hong Ren ◽  
Qiang Wang

The volume parameters of asphalt mixtures is sensitive to compaction temperature. Warm-mix Asphalt (WMA) was green paving technology, which can allow paving at lower temperature. In this study, a laboratory investigation of the volumetric properties of WMA with Sosabit was carried out by the method of Marshall. And the effect of different asphalt such as modified asphalt such as Kalamay, Shell, SK and Kalamay 90# asphalt on volumetric properties of WMA at different temperature was analyzed. Based on this, the minimum compaction temperatures of WMA with Sosabit was proposed. The result showed that bulk density and VFA are decreasing and air voids and VMA increasing with the decreasing temperature; the volume indicators to meet the regulatory requirements when the temperature is 170°C~143°C for three WMA-SBS temperature and 150°C~115°C for WMA-90#; compaction temperatures of modified asphalt and asphalt mixture after adding Sosabit can lower up to 133°C and 118°C respectively.


2008 ◽  
Vol 35 (10) ◽  
pp. 1114-1119 ◽  
Author(s):  
Shu Wei Goh ◽  
Zhanping You

This paper shows a preliminary study of asphalt mixtures containing bottom ash with a primary focus on the permanent deformation. The objectives of this study are (i) perform literature reviews on the mechanical properties of asphalt mixtures containing bottom ash; (ii) evaluate the effects of using bottom ash as the mineral filler for the asphalt mixture through the flow number and dynamic modulus tests; and (iii) use the test results to evaluate the pavement permanent deformation using the Mechanistic–empirical pavement design guide (MEPDG) analysis. It was found that the asphalt mixture using bottom ash uses higher asphalt content due to the higher absorption. The replacement with bottom ash in the asphalt mixture generates a lower dynamic modulus as compared to the control mixtures. Additionally, results from MEPDG analysis show mixtures with bottom ash have higher rutting potential.


2013 ◽  
Vol 753-755 ◽  
pp. 819-822
Author(s):  
Kui Li ◽  
De Dong Guo

AC-13C asphalt mixtures were mixing with 3% Evotherm® content and the optimal compaction temperature was determined according to test results of specimens formed at 4 different compaction temperatures by Marshall method. The general water stability tests and Hamburg wheel-tracking device (HWTD) were used to test the water stability of 4 kinds of asphalt mixtures, which were ordinary asphalt mixture, Evotherm® asphalt mixture without adding any anti-stripping agent, Evotherm® asphalt mixture adding liquid anti-stripping agent and Evotherm® asphalt mixture adding hydrated lime. Test results shows that the optimal compaction temperature is about 125°C; and compared to ordinary asphalt mixture, the long-term water stability of Evotherm® asphalt mixture is obviously poor caused by the lower compaction temperature; the addition of either liquid anti-stripping agent or hydrated lime improve the water stability to a great extent; comparatively speaking, addition of hydrated lime is the optimum measure to improve the water stability of Evotherm® warm mixture asphalt.


2013 ◽  
Vol 668 ◽  
pp. 292-296
Author(s):  
Ya Li Ye ◽  
Chuan Yi Zhuang ◽  
Jia Bo Hu

With the early asphalt pavements have been into the stage of medium maintenance or overhaul, recycling is a very important way for waste asphalt mixtures. A sample was taken in the expressway from Huhhot to Baotou, and the waste mixtures were extracted from field and sieved; so that the new aggregates can be determined and mix design was carried. With the aid of the penetration, the softening point and the viscosity in 135°C test, the quantity of the regenerant and the asphalt content were ascertained. Through the high temperature stable performance, the anti-low temperature performance, the water stability and the Hamburg wheel-tracking test, the appropriate gradation and the optimum asphalt content were determined. The test results showed that the pavement performance of the waste asphalt mixture was enhanced obviously with hot in-place recycling, and it has achieved technical parameters for old asphalt mixture.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4496
Author(s):  
Jiahao Tian ◽  
Sang Luo ◽  
Ziming Liu ◽  
Xu Yang ◽  
Qing Lu

To address the severe distresses of asphalt pavement, a new type of pavement maintenance treatment, porous ultra-thin overlay (PUTO) with small particle size was proposed. The PUTO has a thickness of 1.5–2.5 cm and a large void ratio of 18–25%. As a newly asphalt mixture, the structure characteristics differ from poor traditional pavement. Therefore, it is necessary to investigate the fabrication schemes in laboratory and on-site, respectively. In this study, the optimal fabrication schemes, including compaction temperature and number of blows of PUTO were determined based on Cantabro test and volumetric parameters. Then, the corresponding relationship between laboratory and on-site compaction work was then established based on the energy equivalent principle. On this basis, the numbers of on-site rolling passes and the combination method were calculated. The results show that increased compaction temperature and number of blows reduce the height and enhance the compaction of the Marshall sample. With the same temperature and number of blows, the raveling resistance of coarse gradation, Pavement Asphalt Concrete-1 (PAC-1) is better than that of fine gradation, Pavement Asphalt Concrete-2 (PAC-2), and the increased asphalt viscosity significantly improves the raveling resistance of the asphalt mixture. To ensure the scattering resistance and volumetric characteristic, the initial compaction temperature of the PAC-1 and PAC-2 should not be lower than 150 °C and 165 °C, respectively. Then, the laboratory compaction work and on-site compaction work were calculated and converted based on the principle of energy equivalence. Consequently, the on-site compaction combination of rolling machines for four asphalt mixtures was determined. According to the volumetric parameters, the paving test section proved that the construction temperature and the on-site rolling combination determined by laboratory tests are reasonable, and ultra-thin overlay has good structural stability, drainage, and skid resistance.


2011 ◽  
Vol 225-226 ◽  
pp. 577-580
Author(s):  
Yong Ye ◽  
Yi Zhou Cai

The objective of this study is to investigate and evaluate the effect of fine aggregates (aggregate size smaller than or equal to 2.36 mm) on the compressive strength and creep behavior of asphalt mixtures. The variables that are considered in the study include the sizes and gradations of fine aggregate. A kind of standant aggregate gradation and four kinds of reduced aggregate gradation mixture specimens are used. Uniaxial compression and static creep tests were realized at different loading conditions. The test results showed that the different fine aggregate sizes do not result in significant differences in compressive strength and creep values using the same percentage of fine aggregates (38.4%). Only the different gradations showed a little differences for mixtures made with different gradations but same aggregate size (between 2.36 and 1.18 mm).


2017 ◽  
Vol 2633 (1) ◽  
pp. 108-116 ◽  
Author(s):  
Max A. Aguirre ◽  
Marwa M. Hassan ◽  
Sharareh Shirzad ◽  
Louay N. Mohammad ◽  
Samuel B. Cooper

The use of recycled asphalt shingles (RAS) in asphalt paving construction represents a sustainable approach to reduce virgin material consumption and negative environmental effects, as well as the cost of asphalt pavement. However, many challenges are yet to be addressed about the use of RAS in paving applications. This study evaluated the effect of the incorporation of postconsumer waste shingles and rejuvenators on the performance of hot-mix asphalt. Four asphalt rejuvenators—one bio-oil and three synthetic oils—were evaluated. A set of laboratory tests was conducted to characterize the performance of asphalt mixtures against permanent deformation and fatigue cracking. The addition of 5% RAS showed an improvement in permanent deformation when compared with a conventional mixture with no RAS. Yet the addition of asphalt rejuvenator products slightly decreased the performance against permanent deformation. On the basis of Hamburg wheel-tracking device test results, the addition of RAS did not adversely affect moisture resistance. Yet semicircular bending test results showed that the asphalt mixtures that contained asphalt rejuvenators had a lower critical strain energy release rate than the minimum threshold value (0.5 kJ/m2), which indicated a greater susceptibility to intermediate-temperature cracking.


2021 ◽  
Vol 11 (17) ◽  
pp. 7992
Author(s):  
Yunhong Yu ◽  
Gang Xu ◽  
Tianling Wang ◽  
Huimin Chen ◽  
Houzhi Wang ◽  
...  

Nanoindentation has been applied in the field of asphalt mixtures, but, at the nano-scale, changes in the composition of the mixture and material properties can have a significant impact on the results. Therefore, it is necessary to investigate the feasibility of nanoindentation tests on different types of asphalt mixtures with different gradations and the influence of material properties and test methods on nanoindentation results. In this paper, the nanoindentation test results on three kinds of asphalt mixture (AC-13, SMA-13, and OGFC-13) with different aggregate gradations were investigated. The load-displacement curves and moduli obtained from the nanoindentation tests were analyzed. In addition, nanoindentation tests were carried out before and after polishing with different ratios of filler and asphalt (RFA) (0.8–1.6). On this basis, the morphology of asphalt specimens with different RFAs is observed by scanning electron microscopy (SEM) imaging. The results indicate that using the nanoindentation test to characterize the mechanical behavior of asphalt mixture, the confidence level of the dense-graded mixture is low, and non-dense-graded mixtures are used as much as possible. Moreover, results illustrate that the nanoindentation modulus tends to increase as the RFA increases. and the SEM chart shows that the higher the mineral powder content in the mastic, the more complex the bitumen and mineral powder interaction surface, confirming the influence of mineral powder content on the nanoindentation test results. Furthermore, the effect of polishing is almost insignificant.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4910
Author(s):  
Ping Zhang ◽  
Lan Ouyang ◽  
Lvzhen Yang ◽  
Yi Yang ◽  
Guofeng Lu ◽  
...  

As environmentally friendly materials, carbon black and bio-oil can be used as modifiers to effectively enhance the poor high-temperature and low-temperature performance of base asphalt and its mixture. Different carbon black and bio-oil contents and shear time were selected as the test influencing factors in this work. Based on the Box–Behnken design (BBD), carbon black/bio-oil composite modified asphalt was prepared to perform the softening point, penetration, multiple stress creep and recovery (MSCR), and bending beam rheometer (BBR) tests. The response surface method (RSM) was used to analyze the test results. In addition, the base asphalt mixtures and the optimal performance carbon black/bio-oil composite modified asphalt mixtures were formed for rutting and low-temperature splitting tests. The results show that incorporating carbon black can enhance the asphalt’s high-temperature performance by the test results of irrecoverable creep compliance (Jnr) and strain recovery rate (R). By contrast, the stiffness modulus (S) and creep rate (M) test results show that bio-oil can enhance the asphalt’s low-temperature performance. The quadratic function models between the performance indicators of carbon black/bio-oil composite modified asphalt and the test influencing factors were established based on the RSM. The optimal performance modified asphalt mixture’s carbon black and bio-oil content was 15.05% and 9.631%, and the shear time was 62.667 min. It was revealed that the high-temperature stability and low-temperature crack resistance of the carbon black/bio-oil composite modified asphalt mixture were better than that of the base asphalt mixture because of its higher dynamic stability (DS) and toughness. Therefore, carbon black/bio-oil composite modified asphalt mixture can be used as a new type of choice for road construction materials, which is in line with green development.


Sign in / Sign up

Export Citation Format

Share Document