Research and Application of Similarity Criterion in Advance Water Flooding in Low Permeability Reservoir

2013 ◽  
Vol 779-780 ◽  
pp. 1281-1284 ◽  
Author(s):  
Jin Gang He

This paper study on the oil/water phase porous flow process of advance water injection in low permeability reservoirs through the similarity theory. Get oil/water phase porous flow control equation of dimensionless equation through equation analysis method. Solve the dimensionless governing equations with the method of implicit and explicit solution of saturation method (IMPES). Results show that the bigger similarity criterion of sensitive factors, the bigger influence on test results; In the sensitive factors, which π10, π3, π8, π5 as the main similarity criterion. Considering above similar criterion to determine the reasonable indoor experiment of model parameters, which can mobile oil saturation, irreducible water saturation, water phase permeability, relative position well, hole diameter and reservoir thickness affect indoor advanced water flooding experiment of low permeability oil reservoirs recovery degree of the key technical parameters. Key word: Similarity criterion; Low permeability; Physical simulation; Tablet models

2011 ◽  
Vol 361-363 ◽  
pp. 520-525
Author(s):  
Jun Feng Yang ◽  
Han Qiao Jiang ◽  
Han Dong Rui ◽  
Xiao Qing Xie

Physical simulation experiments were made to research on the stress sensitivity on physical property of low permeability reservoir rocks. The experimental results shown that effective pressure had good exponential relationship with reservoir permeability. Combining with materaial balance method, reservoir engineering and rational deducation was made to reserach on water-flooding timing of low permeability reservoir development. Several production targets were obtained by these method, such as formation pressure, water and oil production, water cut and so on. The results shown that advanced water-flooding was very important in low permeability reservoir development to reduce the bad impact of stress sensitivity on formation permeability and maintain formation pressure.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 703-713 ◽  
Author(s):  
Hao Yongmao ◽  
Lu Mingjing ◽  
Dong Chengshun ◽  
Jia Jianpeng ◽  
Su Yuliang ◽  
...  

AbstractAimed at enhancing the oil recovery of tight reservoirs, the mechanism of hot water flooding was studied in this paper. Experiments were conducted to investigate the influence of hot water injection on oil properties, and the interaction between rock and fluid, petrophysical property of the reservoirs. Results show that with the injected water temperature increasing, the oil/water viscosity ratio falls slightly in a tight reservoir which has little effect on oil recovery. Further it shows that the volume factor of oil increases significantly which can increase the formation energy and thus raise the formation pressure. At the same time, oil/water interfacial tension decreases slightly which has a positive effect on production though the reduction is not obvious. Meanwhile, the irreducible water saturation and the residual oil saturation are both reduced, the common percolation area of two phases is widened and the general shape of the curve improves. The threshold pressure gradient that crude oil starts to flow also decreases. It relates the power function to the temperature, which means it will be easier for oil production and water injection. Further the pore characteristics of reservoir rocks improves which leads to better water displacement. Based on the experimental results and influence of temperature on different aspects of hot water injection, the flow velocity expression of two-phase of oil and water after hot water injection in tight reservoirs is obtained.


2021 ◽  
Vol 6 ◽  
pp. 37-42
Author(s):  
Huynh Thi Thu Huong ◽  
Nguyen Huu Quang ◽  
Le Van Son ◽  
Tran Trong Hieu

The oil/water partitioning components such as alkylphenols and aliphatic acids naturally exist in crude oil compositions at different initial concentrations of hundreds or even thousands of ppm depending on the location of the reservoir compared to the site of original rocks. During contact with sweeping injection brine, those compounds diffuse from oil phase to water phase due to oil/water partitioning behaviours. As a result, their concentration in oil contacting with water will be attenuating during water injection. Their concentration profile in water injection history contains the information related to diffusion in oil and water phase, interstitial velocity of water and oil saturation. This paper presents the research results of theoretical model and numerical model of the washed-out process of alkylphenols in the late stage of water injection. The research results have proposed approximate analytical expression for concentration of alkylphenols at the late stage of water flooding. In this regard, at the sufficient large injection volume the alkylphenol concentration attenuates exponentially and the attenuation rate depends on parameters such as partitioning coefficient, oil saturation and interstitial velocity of water and oil and diffusion coefficients. The simulation concentration results obtained from UTCHEM simulator for the 5-spot model showed a good match with analytical calculation results. The research results can be used as the basis for developing methods to assess water flooding systems as well as oil saturation. The results can also be used for study of transport of non-aqueous phase liquid (NAPL) in environmental contamination. Keywords: Residual oil saturation, waterflooding, tracer, partitioning organic compounds, enhanced oil recovery.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Nie Bin ◽  
Gu Shaohua ◽  
Zeng Sijia

A mathematical equation of water drive physical simulation of pressure-sensitive fractured reservoirs was established based on previous research results. In this study, the similarity criteria of water drive physical simulation of pressure-sensitive fractured reservoirs were derived according to the similarity theory. First of all, based on the three-dimensional differential equation of rock mechanics, a dimensionless analysis was conducted to determine the similarity relationship between the displacement of oil by water of pressure-sensitive fractured reservoirs, the similarity criterion was obtained, and the similarity criteria were formed. Secondly, according to the similarity criterion, the similar relationship between the stress-strain fields of the real object and the simulated object was worked out. Thirdly, the finite element software COMSOL Multiphysics was applied to model and calculate the multifield coupling process in the percolation of pressure-sensitive fractured reservoirs, verifying the correctness of the established similarity criteria and similarity relationship. The verifying results shows that the similarity between the physical model and the actual model can be realized by magnifying the geometric size N times in a certain direction and adjusting the load and boundary conditions according to the similarity principle, which can be used for the design of the pressure-sensitive fractured reservoir simulation model for a physical indoor test.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Xingwang Shi ◽  
Zhengming Yang ◽  
Yapu Zhang ◽  
Guangya Zhu ◽  
Qianhua Xiao

To study the flow mechanism under different displacement modes of low permeability carbonate reservoir in the Middle East and to improve the utilization of various types of reservoirs, the physical simulation experiments of water flooding by different displacement methods were carried out. Selecting two types of rock samples with different permeability levels, two-layer coinjection and separated production experiments by samples I and III and conventional water flooding experiments by samples II and IV were carried out. In addition, by using low magnetic field nuclear magnetic resonance, the development effect of microscopic pore structure under the different injection-production models was analyzed. Results show that, compared with the coinjection, the recovery rate of sample I was higher than II, 19.30%; sample III was lower than IV, 23.22%; and the comprehensive recovery degree reduced by 3.92%. NMR data also show that the crude oil is mainly distributed in the large pore throat; after water flooding, the displacement is also within the large pore throat, whereas the small pore throat is mainly obtained by the effect of infiltration absorption. The above studies provide a laboratory basis and foundation for the further development of low permeability carbonate reservoir in different Middle East strata.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 791
Author(s):  
Bo Deng ◽  
Zhiwei Jia ◽  
Wei Liu ◽  
Xiaoqiang Liu ◽  
Jianwei Gu ◽  
...  

The SD107 gel system developed has good oil–water phase selective gelation and oil–water phase selective blocking properties. The static gel-forming experiment results showed that the gel water shutoff system formulated with oilfield reinjection water (oil content < 0.05%) has a viscosity of 200 mPa·s after gelation, and the gel water plugging system formulated with oilfield produced fluid (oil content ≥ 20.0%) had a viscosity of 26 mPa·s after gelation. Results of the core physical simulation experiment indicated that the enhanced recovery rate was the highest (34.6%) when the resistance ratio of the high-low permeability core was about 10.0 after plugging. As per the fluid volume (Q) of the oil well to be blocked, the maximum production pressure difference (∆P) was predicted, and on the basis of economic output, the resistance of the oil section, the resistance of the high water cut section, and the resistance of the water outlet section after plugging was used to calculate the plugging depth (re1, the limit water plugging radius), which offers a basis for the design of water plugging process parameters for horizontal wells. The field water plugging test results showed that after using this water plugging technology, the daily oil production increased from about 4 t/d to 20 t/d, the daily oil increase was 16 t/d, and the water cut decreased from 75% to about 25%. The water-blocking construction was a success.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8200
Author(s):  
Tao Ning ◽  
Meng Xi ◽  
Bingtao Hu ◽  
Le Wang ◽  
Chuanqing Huang ◽  
...  

Water flooding technology is an important measure to enhance oil recovery in oilfields. Understanding the pore-scale flow mechanism in the water flooding process is of great significance for the optimization of water flooding development schemes. Viscous action and capillarity are crucial factors in the determination of the oil recovery rate of water flooding. In this paper, a direct numerical simulation (DNS) method based on a Navier–Stokes equation and a volume of fluid (VOF) method is employed to investigate the dynamic behavior of the oil–water flow in the pore structure of a low-permeability sandstone reservoir in depth, and the influencing mechanism of viscous action and capillarity on the oil–water flow is explored. The results show that the inhomogeneity variation of viscous action resulted from the viscosity difference of oil and water, and the complex pore-scale oil–water two-phase flow dynamic behaviors exhibited by capillarity play a decisive role in determining the spatial sweep region and the final oil recovery rate. The larger the viscosity ratio is, the stronger the dynamic inhomogeneity will be as the displacement process proceeds, and the greater the difference in distribution of the volumetric flow rate in different channels, which will lead to the formation of a growing viscous fingering phenomenon, thus lowering the oil recovery rate. Under the same viscosity ratio, the absolute viscosity of the oil and water will also have an essential impact on the oil recovery rate by adjusting the relative importance between viscous action and capillarity. Capillarity is the direct cause of the rapid change of the flow velocity, the flow path diversion, and the formation of residual oil in the pore space. Furthermore, influenced by the wettability of the channel and the pore structure’s characteristics, the pore-scale behaviors of capillary force—including the capillary barrier induced by the abrupt change of pore channel positions, the inhibiting effect of capillary imbibition on the flow of parallel channels, and the blockage effect induced by the newly formed oil–water interface—play a vital role in determining the pore-scale oil–water flow dynamics, and influence the final oil recovery rate of the water flooding.


2013 ◽  
Vol 868 ◽  
pp. 522-528
Author(s):  
Tao Ping Chen ◽  
Biao Qiu ◽  
Qi Hao Hu

As concerning the limitations of the classic capillary number theory in the applications to the oil displacement with the ultra low interfacial intension system in low permeability reservoirs, considering the flow velocity of water/oil displacement through pores in low permeability reservoirs and the mechanism of displacement of the remaining oil in the parallel pores, and considering the influences of ultra low interfacial intension on oil/water relative permeability and the influences of non-homogeneity on the recovery, the expression of modification of the capillary number was given. The relation curves of recovery and capillary number were plotted through the displacement experiments with the ultra low interfacial intension system in low permeability cores. Some points on the application of capillary number to the oil displacement with the ultra low interfacial tension system were given, and the reasonable ways of enhancing the recovery of water flooding low permeability reservoirs with ultra low interfacial intension system were shown.


2021 ◽  
Author(s):  
Xu-Guang Song ◽  
Ming-Wei Zhao ◽  
Cai-Li Dai ◽  
Xin-Ke Wang ◽  
Wen-Jiao Lv

AbstractThe ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention. In this work, the active silica nanofluids were prepared by modified active silica nanoparticles and surfactant BSSB-12. The dispersion stability tests showed that the hydraulic radius of nanofluids was 58.59 nm and the zeta potential was − 48.39 mV. The active nanofluids can simultaneously regulate liquid–liquid interface and solid–liquid interface. The nanofluids can reduce the oil/water interfacial tension (IFT) from 23.5 to 6.7 mN/m, and the oil/water/solid contact angle was altered from 42° to 145°. The spontaneous imbibition tests showed that the oil recovery of 0.1 wt% active nanofluids was 20.5% and 8.5% higher than that of 3 wt% NaCl solution and 0.1 wt% BSSB-12 solution. Finally, the effects of nanofluids on dynamic contact angle, dynamic interfacial tension and moduli were studied from the adsorption behavior of nanofluids at solid–liquid and liquid–liquid interface. The oil detaching and transporting are completed by synergistic effect of wettability alteration and interfacial tension reduction. The findings of this study can help in better understanding of active nanofluids for EOR in ultra-low permeability reservoirs.


Sign in / Sign up

Export Citation Format

Share Document