Study on Sediment Reduction Effect by Soil Retaining Dam with Different Storage Capacity Allocation Proportion in Dali River Watershed

2013 ◽  
Vol 779-780 ◽  
pp. 1462-1467
Author(s):  
Da Chuan Ran ◽  
Wen Yi Yao ◽  
Zhan Bin Li ◽  
Quan Hua Luo

Analysis and study were carried out by means of mathematical statistics on sediment reduction effect by soil retaining dam with different storage capacity allocation proportion in Dali river watershed of the Yellow River. The results indicate that, sediment reduction by large, middle and small soil retaining dam account for 80.1%, 14.6%, 5.3% of the total reduction; the sediment reduction benefit has reached its maximum since 1990s, amounting to 30.2%, with corresponding storage allocation proportion of 1.84:2.37:5.79.Dam and reservoir have obvious influence on the correlation between rainfall and sediment in the river watershed, sediment transport is reduced by 10 million ton corresponding to annual average flood season rainfall of 350mm in the watershed. Within the sediment reduction capability of soil retaining dam, the sediment reduction volume increase with more rainfall in the flood season, having the feature of the more incoming sediment is, the more sediment reduction will be.

2022 ◽  
Vol 9 ◽  
Author(s):  
Zeyu Zhang ◽  
Junrui Chai ◽  
Zhanbin Li ◽  
Li Chen ◽  
Kunxia Yu ◽  
...  

With years of vegetation restoration and check dam construction on the Loess Plateau, the sediment load of the middle reaches of the Yellow River have decreased sharply; however, the effects of check dam on this decrease of sediment load with such extensive vegetation restoration remains unclear. In order to further clarify the effects of check dam on sediment load reduction under vegetation restoration, we calculated vegetation coverage and check dam index based on multi-source remote sensing data, and calculated sediment reduction rate caused by human activities by Mann-Kendall statistical test and double cumulative curve, then established regression equations incorporating the check dam index and the sediment reduction rate using data from different geomorphic regions with different vegetation coverages. The results showed that sediment load in the Hekou-Longmen region and its 17 tributaries decreased significantly every year, and the change in sediment load could be divided into 3 typical periods: the base period (P1), the period mainly impacted by check dam construction (P2) and the period with comprehensive impact of check dam construction and vegetation restoration (P3). Compared with sediment load of the tributaries during P1, the sediment load decreased by 60.96% during P2 and by 91.76% during P3. Compared with the contribution of human activities to the reduction in sediment load in P2, the contribution of human activities in P3 increased significantly, while that of precipitation decreased slightly. The sediment reduction effect of check dams is greater in basins with low vegetation coverage than in basins with high vegetation coverage. There are differences in sediment reduction effect of vegetation restorations in different geomorphic regions, and the effect of vegetation restoration alone have certain upper limits. Such as, the upper limit of sediment reduction rate of vegetation restoration for rivers flowing through the sandstorm region is 47.86%. Hence, only combined the construction of check dam with vegetation restoration can it achieve more significant sediment reduction benefit and control soil erosion more effectively.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 521
Author(s):  
Qinghe Zhao ◽  
Shengyan Ding ◽  
Xiaoyu Ji ◽  
Zhendong Hong ◽  
Mengwen Lu ◽  
...  

Human activities are increasingly recognized as having a critical influence on hydrological processes under the warming of the climate, particularly for dam-regulated rivers. To ensure the sustainable management of water resources, it is important to evaluate how dam construction may affect surface runoff. In this study, using Mann–Kendall tests, the double mass curve method, and the Budyko-based elasticity method, the effects of climate change and human activities on annual and seasonal runoff were quantified for the Yellow River basin from 1961–2018; additionally, effects on runoff were assessed after the construction of the Xiaolangdi Dam (XLD, started operation in 2001) on the Yellow River. Both annual and seasonal runoff decreased over time (p < 0.01), due to the combined effects of climate change and human activities. Abrupt changes in annual, flood season, and non-flood season runoff occurred in 1986, 1989, and 1986, respectively. However, no abrupt changes were seen after the construction of the XLD. Human activities accounted for much of the reduction in runoff, approximately 75–72% annually, 81–86% for the flood season, and 86–90% for the non-flood season. Climate change approximately accounted for the remainder: 18–25% (annually), 14–19% (flood season), and 10–14% (non-flood season). The XLD construction mitigated runoff increases induced by heightened precipitation and reduced potential evapotranspiration during the post-dam period; the XLD accounted for approximately 52% of the runoff reduction both annually and in the non-flood season, and accounted for approximately −32% of the runoff increase in the flood season. In conclusion, this study provides a basic understanding of how dam construction contributes to runoff changes in the context of climate change; this information will be beneficial for the sustainable management of water resources in regulated rivers.


Author(s):  
Wei Shen ◽  
Zhicheng Zheng ◽  
Yaochen Qin ◽  
Yang Li

Quantitative assessment can scientifically determine the health status of a regional ecosystem, identify regional eco-environmental problems, and assist in promoting regional sustainable development and environmental management. Taking China’s important ecological function region, the Yellow River affected area as an example, this study constructed an extended evaluation index system based on the pressure-state-response framework, and remote sensing and GIS techniques were used to dynamically evaluate the spatial and temporal characteristics of ecosystem health in the study area. Furthermore, influencing factors on ecosystem health in the study area were extensively analyzed using the GeoDetector model. The results show that the ecosystem health level in the study area shows significant spatial heterogeneity from 1995–2015, and showed a fluctuating change process. Areas with large fluctuations in health level were mainly distributed in extreme climate areas, ecologically fragile areas, on plains and in hilly areas. Spatial differences of ecosystem health were well explained by using the biological abundance index, relief degree of land surface, soil type, annual average precipitation, elevation, annual average temperature, and population density. Influencing factors have significant interactive effects on ecosystem health.


2018 ◽  
Vol 10 (12) ◽  
pp. 4589 ◽  
Author(s):  
Lei Tian ◽  
Jiming Jin ◽  
Pute Wu ◽  
Guo-yue Niu

Climatic elasticity is a crucial metric to assess the hydrological influence of climate change. Based on the Budyko equation, this study performed an analytical derivation of the climatic elasticity of evapotranspiration (ET). With this derived elasticity, it is possible to quantitatively separate the impacts of precipitation, air temperature, net radiation, relative humidity, and wind speed on ET in a watershed. This method was applied in the Wuding River Watershed (WRW), located in the center of the Yellow River Watershed of China. The estimated rate of change in ET caused by climatic variables is −10.69 mm/decade, which is close to the rate of change in ET (−8.06 mm/decade) derived from observable data. The accurate estimation with the elasticity method demonstrates its reliability. Our analysis shows that ET in the WRW had a significant downward trend, but the ET ratio in the WRW has increased continually over the past 52 years. Decreasing precipitation is the first-order cause for the reduction of ET, and decreasing net radiation is the secondary cause. Weakening wind speed also contributed to this reduction. In contrast, regional warming led to an increase in ET that partly offset the negative contributions from other climatic variables. Moreover, reforestation can affect the energy budget of a watershed by decreasing albedo, compensating for the negative influence of global dimming. The integrated effect from precipitation and temperature can affect the energy budget of a watershed by causing a large fluctuation in winter albedo.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1671 ◽  
Author(s):  
Dong Zhang ◽  
Dongmei Han ◽  
Xianfang Song

Sanmenxia Dam, one of the most controversial water conservancy projects in China, has seriously impacted the lower Weihe River of the Yellow River Watershed since its operation. At the Huaxian Station, the dam operation controls the surface water level and leads to the variation of the surface water–groundwater interaction relationship. The river channel switched from a losing reach during the early stage (1959) to a gaining reach in 2010 eventually. The comparison of tracer (Cl−, δ18O and δ2H) characteristics of surface water in successive reaches with that of ambient groundwater shows that the general interaction condition is obviously affected by the dam operation and the impact area can be tracked back to Weinan City, around 65 km upstream of the estuary of the Weihe River. The anthropogenic inputs (i.e., agricultural fertilizer application, wastewater discharge, and rural industrial sewage) could be responsible for the deterioration of hydro-environment during the investigation periods of 2015 and 2016, as the population and fertilizer consumption escalated in the last 60 years. The use of contaminated river water for irrigation, along with the dissolved fertilizer inputs, can affect the groundwater quality, in particular resulting in the NO3− concentrations ranging from 139.4 to 374.1 mg/L. The unregulated industrial inputs in some rural areas may increase the Cl− contents in groundwater ranging from 298.4 to 472.9 mg/L. The findings are helpful for the improved comprehensive understanding of impacts of the Sanmenxia Dam on the interaction between surface water and groundwater, and for improving local water resources management.


Author(s):  
KE ZHOU

River flood season segmentation is a significant measure for flood prevention. The objective of this study is to carry out theoretical analysis on flood season segmentation methods and put forward a framework for reasonable flood season segmentation. The proposed framework consists of a Fisher optimal partition method for determining the optimum numbers of the sub-seasons, an ensemble approach for segmenting a defined flood season, and a Non-parametric bootstrap combined with fuzzy optimum selection method (NB-FOS) for testing the rationality of the flood season staging schemes. The present research findings show that different methods could result in different staging schemes. It is proved through rational analysis that the staging scheme obtained by Probability change-point (PCP) is superior to others. The flood season of the downstream reach of Yellow River can be segmented into 3 sub-seasons, i.e. early flood season(Jun.01-July 20), main flood season (July 21- Sept.28), and late flood season (Sept.29- Nov.08). The segmentation results of the flood season should play active role in flood prevention.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xizhi Lv ◽  
Zhongguo Zuo ◽  
Yongxin Ni ◽  
Juan Sun ◽  
Henian Wang

Abstract Hydrological cycle changes that occur due to a changing environment is a hot topic in the field of hydrological science. It is of great practical significance to study the response mechanism of hydrological process change for future water resources planning and management. In this study, the effects of climate and watershed characteristic change on the streamflow in a typical tributary of the Yellow River (the Fen River watershed) are studied based on the Budyko hypothesis. The results show that: the sensitivity coefficients of streamflow to precipitation, potential evapotranspiration, and the watershed characteristic coefficient were 0.1809, −0.0551, and −27.0882, respectively. This meant that a 1 mm decrease in the precipitation would induce a 0.1809 mm decrease in the streamflow. Additionally, a 1 mm decrease in the potential evapotranspiration would induce a 0.0551 mm increase in the streamflow, and an increase of 1 in the watershed characteristic coefficient would induce a 27.0882 mm decrease in the streamflow. The streamflow of the Fen River watershed showed a significant decreasing trend during the reference period (1951–1977). In addition, the streamflow of the change period (1978–2010) decreased 26.87 mm; and this was primarily caused by watershed characteristic change which accounted for 92.27%, while climate change only accounted for 6.50%.


Sign in / Sign up

Export Citation Format

Share Document