The Research of Models for TKY Tubular Joint Welds in Ultrasonic Phased Array Inspection

2013 ◽  
Vol 779-780 ◽  
pp. 26-33
Author(s):  
Ming Hui Lu ◽  
Hong Liang Shao ◽  
Jun Jie Chang ◽  
Xun Feng Liu

In order to solve the problem of locating defects from TKY node structure weld using for marine engineering , the article present a new approach of establishing TKY’s mathematical model to replace the traditional method of Graphic analytic method, which uses the computer to carry on the drawing. Firstly three-dimensional mathematical model of the Y-shaped tube node is made, based on what it work out the equation of the cross-sectional on different position of weld by introducing the concept of intersecting angle φ, eventually it establish the two dimensional mathematical model of cross-sectional . In the end of the article, some experimental examples show the effectiveness of the models, which testify that using computer graphics to evaluate ultrasonic pulse-echo is more effective , smaller error, higher working efficiency and reduces the impact of human factors greatly.

2019 ◽  
Vol 21 (2) ◽  
pp. 27-37
Author(s):  
Dzintra Kažoka ◽  
Māra Pilmane

Abstract In medical education and preclinical, clinical and transdisciplinary studies, tutors should be able to perform and offer qualitative study courses with more articulated perspective on higher educational sustainable development in higher education. Digital images have found their direct way to education in different medical areas. The aims of the study are to assess and verify the impact of cross-sectional images on the study process of Human Anatomy. In 2018, two randomly selected groups of 200 students from 2nd study year, Faculty of Medicine (Rīga Stradiņš University) were asked by tutors to identify several anatomical structures, using a three-dimensional virtual dissection table “Anatomage”. Group I analyzed cross-sectional images after cutting and segmentation of human body with interactive tools. Group II studied X-ray pictures, computerized tomography scans and magnetic resonance images of different regions and systems. The present paper focuses on the rate of cross-sectional image effectiveness in both groups. Analyzed detailed images represent their role in teaching and learning of Human Anatomy. Interpretation of these medical images will require very deep anatomical knowledge from basic studies until clinical courses.


1999 ◽  
Vol 43 (03) ◽  
pp. 180-193 ◽  
Author(s):  
Odd M. Faltinsen

Water entry of a hull with wedge-shaped cross sections is analyzed. The stiffened platings between two transverse girders on each side of the keel are separately modeled. Orthotropic plate theory is used. The effect of structural vibrations on the fluid flow is incorporated by solving the two-dimensional Laplace equation in the cross-sectional fluid domain by a generalized Wagner's theory. The coupling with the plate theory provides three-dimensional flow effects. The theory is validated by comparison with full-scale experiments and drop tests. The importance of global ship accelerations is pointed out. Hydrodynamic and structural error sources are discussed. Systematic studies on the importance of hydroelasticity as a function of deadrise angle and impact velocity are presented. This can be related to the ratio between the wetting time of the structure and the greatest wet natural period of the stiffened plating. This ratio is proportional to the deadrise angle and inversely proportional to the impact velocity. A small ratio-means that hydroelasticity is important and a large ratio means that hydroelasticity is not important.


2020 ◽  
Vol 62 (4) ◽  
pp. 184-191
Author(s):  
S Davì ◽  
C Mineo ◽  
C MacLeod ◽  
S G Pierce ◽  
A Gachagan ◽  
...  

Ultrasound undergoes refraction and reflection at interfaces between media of different acoustic refractive indices. The most common ultrasonic method (pulse-echo) monitors the reflected energy to infer the presence of flaws, whereas the lower amplitude of refracted signals is ignored. When the reflector is orientated normally with respect to the ultrasonic beam, the received echo signal shows the maximum amplitude. The pulse-echo method also relies on monitoring the amplitude of the backwall echo to identify or confirm the presence of defects. This works well for parts with constant thickness and with planar backwalls. Unfortunately, parts with complex backwalls are common to many industrial sectors. For example, applications such as aerospace structures often require parts with complex shapes. Assessing such parts reliably is not trivial and can cause severe downtime in the aerospace manufacturing processes or during in-service inspections. This work aims to improve the ultrasonic inspectability of parts with complex backwalls, through sending ultrasonic beams from the frontwall side. Ultrasonic phased array probes and state-of-the-art instrumentation allow ultrasonic energy to be sent into a part at wide ranges of focusing depths and steering angles. This allows for tracking of the backwall profile, thus hitting it normally and maximising the amplitude of the reflected echo at any point. However, this work has shown that a cross-sectional scan resulting from multiple ultrasonic beams, which are sent at variable incidence angles, can present significant geometrical distortion and cannot be of much use for accurate defect visualisation and sizing. This paper introduces a generalised algorithm developed to remove geometric distortions and the effect that variable refraction coefficients have on the transmitted and received amplitudes. The algorithm was validated through CIVA simulations for two example parts with complex backwalls, considering isotropic materials.


CARALL hybrid material has been extensively used in the aircraft structure due to their competitive impact strength. Low velocity impact test is utilized to evaluate the impact and damage properties for such material. It is also employed to observe complex damage mechanisms. A numerical modelling is an alternative way for impact assessment. This paper investigates the impact and damage properties under low velocity impact using numerical modeling and experimental work. A three-dimensional (3D) finite element (FE) model was devolved and validated with two studies from the literature. This model was meshed with solid elements. It was subjected to 2.4 m/s impact velocity and to 10 J impact energy. Absorbed energy, penetration, impact load and damage morphology were obtained. The impact energy was efficiently absorbed by the material. Both aluminum alloy layers underwent plastic deformation whereas the fiber layer failed. A macroscopic cross-sectional morphology was presented using the FE model. An agreement between the numerical and the experiment results were achieved and discussed.


2020 ◽  
Vol 20 (4) ◽  
pp. 178-186
Author(s):  
Dongjie Yan ◽  
Ziang Zhang ◽  
Zhenyang Li ◽  
Ya Yu ◽  
Hao Gong ◽  
...  

AbstractThe electrohydrodynamic (EHD) flow induced by a corona discharge has an important influence on the movement and collection of fine particles in an electrostatic precipitator. In this paper, three-dimensional particle image velocimetry (3D-PIV) is used to investigate the impact of different primary flow velocities and applied voltage on diffusion and transport of the spiked tubular electrode corona discharge EHD flow in a wide type electrostatic precipitator. In order to measure the flow characteristics of different positions of a spiked tubular electrode, the PIV measurements are carried out in several cross-sectional planes along the ESP duct. From 2D flow streamlines, in plane 1 (where the tip of the spike is oriented in the direction of primary flow), the velocity of the counter-clockwise vortex caused by the EHD flow near the plate decreases as the primary flow velocity increases. However, in plane 3 (where the tip direction is opposite to the primary flow), two vortices rotate adversely, and the flow velocity of the clockwise vortex near the plate increases as the primary flow velocity increases. Flow velocity increasing near the plate makes the particles deposited on the plate more easily to be re-entrained. It can be found in the three-dimensional analysis of the flow field that there are mainly “ascending vortex” and downward tip jet in the three observation planes. There is a discrepancy (in terms of distribution region and the magnitude of velocity) between the three-dimensional characteristics of these vortices and tip jets in the different cross-sectional planes.


2004 ◽  
Vol 270-273 ◽  
pp. 180-185
Author(s):  
Jung Hyun Kwon ◽  
Samuel Moon-Ho Song ◽  
Hong Rae Chang ◽  
Je Joong Sung ◽  
Hyung Keun Ahn ◽  
...  

Author(s):  
Richard Karsten

Large tidal currents exist in Minas Passage, which connects Minas Basin to the Bay of Fundy off the northwestern coast of Nova Scotia. The strong currents through this deep, narrow channel make it a promising location for the generation of electrical power using instream turbines. These strong currents are clearly illustrated in the results of a high-resolution, three-dimensional model of the flow through Minas Passage presented here. The simulations also clearly indicate the asymmetry of the flood and ebb tides and the 3D structure of the flow. A previous study has indicated that as much as 7000 MW could be extracted from the tidal currents through Minas Passage. However, this estimate was based on a complete fence of turbines across the passage, in essence a tidal barrage. In this paper, the power potential of partial turbine fences is examined. In order to estimate the power potential of turbine arrays, the theory of partial turbine fences is adapted to the particular dynamics of Minas Passage. The theory estimates the potential power of the fence and the change in flow that would result. The results are presented in terms of the portion of the cross-sectional area that the turbines occupy and the drag coefficient of the turbines. When the turbine fence occupies a large portion of the passage, the potential power of the fence rises significantly, to a value much larger than estimates based on the kinetic energy flux. The increase in power comes from the increased tidal head that a large turbine fence creates and the resulting increase in the turbine drag. We also present the efficiency of the turbine fence — given as the ratio of the power associated with the turbine drag over the total power extracted from the flow — and the impact of the turbines on the tidal flow. The results of the theory are compared to numerical simulations of the flow through the passage with turbines represented as regions of increased drag. The numerical simulations give power values that are three to six time as high as the theory suggests is possible. This discrepancy is examined by plotting the changes in tidal currents caused by the turbine fence.


2021 ◽  
Vol 51 (3) ◽  
pp. 282-287
Author(s):  
Heinz-Lothar Meyer ◽  
◽  
Felicitas Minnemann ◽  
Christina Polan ◽  
Manuel Burggraf ◽  
...  

Introduction: Underwater rugby (UWR) is a team sport which combines swimming sprints, apnoea diving, a good overview of the three-dimensional underwater space and wrestling for the ball.This was the first epidemiological study of UWR injuries in a large international collective. Methods: A questionnaire containing 124 questions was distributed to 198 active UWR players and completed under the supervision of medical staff. Demographic data and information about injuries in ten different body regions were collected. Results: Of the 198 respondents, 106 (53.5%) were male and 92 (46.5%) were female. On average, each UWR player suffered a median of 19.5 (IQR 44) injuries. Based on the exposure time, means of 37.7 (SD 90.0) injuries per 1000 playing hours per player and 9.9 (20.1) injuries per year were found. Significant injuries mainly occurred to the head region (45.7%). Bruises and sprains were observed more often than fractures and dislocations. Male athletes had a longer total injury break time (median 4.8 [IQR 10.5] days), than female athletes (4 [8.6] days). Female athletes had more injuries (median 20 [IQR 26.8]) than male athletes (18.5 [63]). The length of the injury-related break time increased with the rise in body mass index. Conclusions: The risk of severe injury in UWR is low compared to other ball sports like water polo and rugby. UWR is played under water and the impact of tackles is lessened by the water. Further studies should record chronic injuries in UWR and establish measures to prevent injury.


2019 ◽  
Vol 289 ◽  
pp. 06003 ◽  
Author(s):  
Lubos Misak ◽  
David Corbett ◽  
Michael Grantham

The use of ultrasonic waves in the medical field is quite advanced, especially in the area of three-dimensional (3D) imaging of the human body and is quite common. Also, in Non-Destructive Testing of metal (for example weld checking), flaw detection with reliable 3D imaging is already in use. In the past 1 -2 years, the construction industry has made significant advances in two-dimensional (2D) and three-dimensional (3D) imaging of concrete structures, for finding problems, or irregularities inside, or just for confirming the quality of the construction work. This paper describes the principles of the different types of scan, A Scan, B Scan etc and how the scans can be combined to make 3D images. The advantages of multi head array systems in providing more detail and revealing depth information are shown. This paper will show the advantages of this development and how it can ease workflow.


Sign in / Sign up

Export Citation Format

Share Document