Response of Functionality Graded Hydroxyapatite/F-75 in Saline Solution 0.9% NaCl

2013 ◽  
Vol 795 ◽  
pp. 338-342
Author(s):  
Noorazimah Ab Llah ◽  
Shamsul Baharin Jamaludin ◽  
Nur Hidayah Ahmad Zaidi

Functionally graded hydroxyapatite (HAP) /F-75 was fabricated using powder metallurgy technique. Samples fabricated were tested inside 0.9% NaCl to check their bioactivity reaction. After immersed, samples were analyzed using Fourier Transform Infrared (FTIR) and mass change. Result showed that mass gain decreased as the percentage of HAP in the intermediate layer increased. Mass gain obtained after immersion test because of the passive layer formation on the F-75 surface. Dissolution of HAP was occurred as the FTIR analysis detected the existence of phosphate, and hydroxide ions bands inside the solution. The dissolution process is the part of the mechanism of apatite formation. The apatite layer formation is important to encourage the formation of new bone.

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3588
Author(s):  
Jiayi Chen ◽  
Yansong Liu ◽  
Jiayue Zhang ◽  
Yuanlin Ren ◽  
Xiaohui Liu

Lyocell fabrics are widely applied in textiles, however, its high flammability increases the risk of fire. Therefore, to resolve the issue, a novel biomass-based flame retardant with phosphorus and nitrogen elements was designed and synthesized by the reaction of arginine with phosphoric acid and urea. It was then grafted onto the lyocell fabric by a dip-dry-cure technique to prepare durable flame-retardant lyocell fabric (FR-lyocell). X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) analysis demonstrated that the flame retardant was successfully introduced into the lyocell sample. Thermogravimetric (TG) and Raman analyses confirmed that the modified lyocell fabric featured excellent thermal stability and significantly increased char residue. Vertical combustion results indicated that FR-lyocell before and after washing formed a complete and dense char layer. Thermogravimetric Fourier-transform infrared (TG-FTIR) analysis suggested that incombustible substances (such as H2O and CO2) were produced and played a significant fire retarding role in the gas phase. The cone calorimeter test corroborated that the peak of heat release rate (PHRR) and total heat release (THR) declined by 89.4% and 56.4%, respectively. These results indicated that the flame retardancy of the lyocell fabric was observably ameliorated.


Author(s):  
P. Rajiv ◽  
A. Deepa ◽  
P. Vanathi ◽  
D. Vidhya

<p><strong>Objective: </strong>The present investigation focus on screening of phytochemicals and FT-IR analysis of <em>Myristica dactyloids </em>fruit extracts. The fruit extracts were prepared using five different solvents.</p><p><strong>Methods: </strong>The phytochemical analysis and FT-IR (Fourier transform infrared spectroscopy) analysis were performed using standard methods.</p><p><strong>Results: </strong>The results reveals that the alkaloids, steroids, flavonoids, phenolic compounds, proteins, carbohydrates, cardio glycosides and saponins were present in methanolic extract when compared to other solvent extracts. FT-IR analysis shows the presence of different functional groups such as carboxylic acids, aromatics, alkanes, alcohols, phenols, aliphatic amines, alkenes and amine groups in the fruit extracts.</p><p><strong>Conclusion: </strong>The study concluded that the methanolic extract (<em>M. dactyloides </em>fruit) has potential bioactive compounds.</p>


2019 ◽  
Vol 1 (2) ◽  
pp. 1-7
Author(s):  
O.O. Shonekan ◽  
◽  
A.C. Otuka ◽  
D.K. Adeyemi ◽  
O.T. Fatunsin ◽  
...  

Background: Syzygium guineenses, (the most common and abundant specie in Nigeria) is a medicinal plant used by traditional practitioners in northern Nigeria for a variety of healing purposes. Objective: The main objective of this project was to carry out a comparison of antioxidant activities and Fourier Transform Infrared Spectrophotometric (FTIR) analysis on both methanol and hexane leaf extracts of S. guineenses. Methods: Phytochemical screening, Semi-quantitative DPPH (1,1-diphenyl-2-picrylhydrazyl)- dot blot assay and FTIR analysis were performed on both extracts to determine antioxidant activity and identify the functional groups present. Results: Phytochemicals tested for, were observed to be more prominent in the methanol extract than hexane. The in vitro antioxidant assay also revealed a more intense yellow colour of inhibition in methanol extract than the hexane extract. The FTIR spectra revealed different characteristic peak values with various functional compounds in both extracts. The methanol extract displayed major peaks of absorption at 3341 cm-1 (-OH) for alcohol, 1736 cm-1 (C=O) carbonyl group, 1161.83 cm-1, 1036.49 cm-1 (C-O) of esters. Other absorption bands like 1452.25 cm-1 and 1612.20 cm-1 for alkenes were present in both extracts. Conclusion: This result shows that the methanol extract of S. guineenseshas a higher potential of phytochemicals, antioxidants and functional groups than the hexane extract.


Author(s):  
Rajeev Verma ◽  
Narendra Mohan Suri ◽  
Suman Kant

Slurry spray technique (SST) is a distinctive variant among the numerous and already established coating techniques. Functionally graded thermal barrier and environmental barrier coating have been the functionalities developed so far for the process. Among the choice of the various ceramic feedstocks available mullite and partially stabilized zircona have been found suitable and investigated for the coating deposition via SST. This chapter reports the findings of the corrosion studies in simulated industrial corrosive environments and characterization results of the six sets of slurry sprayed mulite-nickel based coatings. Decent protection against coating has been found during the immersion test performed on these coatings for evaluating their corrosion performance. The developed coatings are recommended for use in applications to endure the elevated temperature and inflict corrosion. Thermal cycling test was performed to support the acceptable thermal shock resistance and coating compliance of the developed coatings.


2022 ◽  
pp. 295-320
Author(s):  
Mukesh Kumar Singh ◽  
Annika Singh

Author(s):  
Jian-Qiang Hu ◽  
Ke-Yi Gao ◽  
Da-Wei Liu

Differential scanning calorimetry (DSC) and thin film micro oxidation test (TMOT) were employed to evaluate the antioxidation properties of tin dialkyldithiocarbamate (SnDDC) with p,p′dioctyldiphenylamine (DODPA) antioxidant in pentaerythritol ester (PE) or polyalphaolefin synthetic lubricant (PAO), and their chemical structure were identified by fourier transform infrared spectroscopy (FTIR) analysis. DSC test shows that incipient oxidation temperature and oxidation induction time of DODPA-containing PE were improved significantly by SnDDC addition, SnDDC shows a good oxidative synergism with DODPA antioxidant. TMOT results indicates that the combination of SnDDC and DODPA in polyalphaolefin can also effectively reduce the weight lost, carbonyl peak square index and diposits of oxidized oils, which confirm that the combination of SnDDC and DODPA exhibit good synergistic antioxidation properties and deposits inhibition.


2020 ◽  
Vol 1000 ◽  
pp. 139-147
Author(s):  
Ahmad Nabil Faiz Hidayat ◽  
Ahmad Zakiyuddin ◽  
Sri Harjanto ◽  
Oknovia Susanti

Magnesium has been developed as a biodegradable bone implant material due to its similarity in elasticity modulus of bone. However, magnesium has a higher corrosion rate and a lower strength. Gadolinium is alloyed to magnesium in order to improve the corrosion resistance and then rolled to improve the strength due to grain refinement in rolling. Cold roll produced the finest grain, but magnesium has a poor formability. Due to this fact, warm rolling with temperature 247 – 375 oC is applied. Optical Microscope, Scanning Electron Microscope (SEM), and Energy Dispersive Spectrometry (EDS) are used for characterization. Electrochemical Impedance Spectroscopy (EIS) and Polarization test were carried out to observe the corrosion mechanism of Mg-Gd in SBF Kokubo to replicate a human body condition. The result of polarization test shows that the cross-rolled sample experienced an increase in E corr, with 0,15 and –0,048 V due to a better distribution of Gadolinium. EIS states that the single pass rolled sample has a stronger passive layer with 116 and 126 kΩ value of Rf due to a smaller grain size which resulted a fewer compression stress. The hydrogen evolution was also observed with immersion test. Keywords: uni-directional rolling, cross-directional rolling, corrosion, simulated body fluid, hydrogen evolution.


Sign in / Sign up

Export Citation Format

Share Document