Microwave-Assisted FeCl3·6H2O-Catalyzed Regioselective Deprotection of Pyranose Anomeric O-Acetyl Group

2013 ◽  
Vol 830 ◽  
pp. 155-158 ◽  
Author(s):  
Qiang Wang ◽  
Guo Dong Liu ◽  
Shan Shan Gong ◽  
Qi Sun

Treatment of peracetylated pyranoses with FeCl3·6H2O in acetonitrile under microwave conditions provides an efficient and mild method for regioselective deprotection of anomeric O-acetyl group. The experimental results indicated that the employment of microwave could notably improve the reaction efficacy compared with the conventional heating condition.

2013 ◽  
Vol 859 ◽  
pp. 337-340
Author(s):  
Qiang Wang ◽  
Guo Dong Liu ◽  
Shan Shan Gong ◽  
Qi Sun

Treatment of protected furanoses with FeCl3·6H2O in acetonitrile with microwave irradiation provides an efficient and mild protocol for regioselective removal of anomeric O-acetyl group. This method features cost efficient reagents, simple procedures, and high yields. The experimental results proved that microwave irradiation could notably shorten the reaction time and increase the product yield compared to the conventional thermal heating condition.


2016 ◽  
Vol 70 (10) ◽  
Author(s):  
Hui Ding ◽  
Jin-Long Qi ◽  
Yu-Jie Gao ◽  
Ru-Ru Chen ◽  
She-Jiang Liu ◽  
...  

AbstractAs a novel process intensification technology, microwave-assisted continuous reaction distillation (MRD) was proposed for the esterification reaction and separation of ethyl acetate (EtOAc). The effects of reflux ratio, mole ratio of acetic acid (HOAc) to ethanol (EtOH), reboiler duty, microwave power on EtOH conversions, EtOAc purity and mass ratio of distillate to feed (D/F) were explored. In comparison with conventional heating, the experimental results revealed that the EtOAc purity in the distillate under microwave conditions (MC) was improved. Computer simulations for conventional and MRD systems were performed using the Aspen Plus non-equilibrium stage model to substantiate the experimental results. The model predictions are in good agreement with the experimental data, revealing the accuracy and reliability of the non-equilibrium model. This new MRD process can be an effective and productive method of ester production.


2019 ◽  
Vol 16 (3) ◽  
pp. 194-201 ◽  
Author(s):  
Renu Bala ◽  
Vandana Devi ◽  
Pratibha Singh ◽  
Navjot Kaur ◽  
Pawandeep Kaur ◽  
...  

Background: Tetrahydroindazole, a member of the fused-pyrazole system, is a least studied class of heterocyclic compounds owing to its scarcity in nature. However, a large number of synthetically prepared tetrahydroindazoles are known to show a variety of biological activities such as interleukin- 2 inducible T-Cell kinase inhibitors, AMPA receptor positive allosteric modulators, antitumor, antituberculosis, anti-inflammatory and antimicrobial activities. Vilsmeier-Haack reaction is one of the most important chemical reactions used for formylation of electron rich arenes. Even though Vilsmeier- Haack reaction was studied on a wide variety of hydrazones derived from active methylene compounds, literature lacks the examples of the use of 4-substituted cyclohexanones as a substrate for the synthesis of 4,5,6,7-tetrahydroindazoles. The study of the reaction of Vilsmeier-Haack reagent with hydrazones derived from cyclic keto compounds having active methylene has been considered the interested topic of investigation. In the present study, ethyl cyclohexanone-4-carboxylate was treated with one equivalent of various hydrazines for two hours and the resulted hydrazones were further treated with an OPC-VH reagent (Vilsmeier-Haack reagent isolated from phthaloyl dichloride and N,Ndimethylformamide) afforded 4,5,6,7-tetrahydroindazoles in excellent yields. The synthesized compounds 4a-f and 5a-f were screened for their antioxidant activities using the DPPH radical scavenging assay. The target compounds were synthesized regioselectively using 4+1 approach in excellent yields. A number of experiments using both conventional heating as well as microwave irradiation methods were tried and on comparison, microwave irradiation method was found excellent in terms of easy work up, high chemical yields, shortened reaction times, clean and, no by-products formation. Some of the synthesized compounds showed significant antioxidant activity. The microwave assisted synthesis of 4,5,6,7-tetrahydroindazoles from ethyl cyclohexanone-4-carboxylate has been reported under mild conditions in excellent yield. Easy work up, high chemical yield, shortened reaction times, clean and no by-products formation are the major advantages of this protocol. These advantages may make this method useful for chemists who are interested in developing novel 4,5,6,7-tetrahydroindazole based drugs.


2019 ◽  
Vol 16 (2) ◽  
pp. 117-121 ◽  
Author(s):  
Peipei Han ◽  
Wenhua Zhou ◽  
Mingxia Chen ◽  
Qiuan Wang

A series of eight polymethoxychalcone Mannich base derivatives 2a-2h was synthesized via the microwave-assisted Mannich reaction of natural product 2'-hydroxy-3,4,4',5,6'-pentamethoxychalcone (1) with various secondary amines and formaldehyde. Compared to conventional heating method (80°C), the microwave-assisted method (700W, 65°C) is efficient with short reaction time (0.5-1 h) and good yields (74-88%). The antiproliferative activities of eight Mannich base derivatives were evaluated in vitro on a panel of three human cancer cell lines (Hela, HCC1954 and SK-OV-3) by CCK-8 assay. The results showed that all of the Mannich base derivatives exhibited potential antiproliferative activities on tested cancer cell lines with the IC50 values of 9.13-48.51 µM. Some active compounds exhibited more activity as compared to positive control cis-Platin. Among them, compound 2b revealed to have the strongest antiproliferative activity against all the three cancer cell lines with IC50 values ranging from 9.13 to 11.24 µM.


2020 ◽  
Vol 7 (3) ◽  
pp. 183-195
Author(s):  
Musa Özil ◽  
Emre Menteşe

Background: Benzoxazole, containing a 1,3-oxazole system fused with a benzene ring, has a profound effect on medicinal chemistry research owing to its important pharmacological activities. On the other hand, the benzoxazole derivative has exhibited important properties in material science. Especially in recent years, microwave-assisted synthesis is a technique that can be used to increase diversity and quick research in modern chemistry. The utilization of microwave irradiation is beneficial for the synthesis of benzoxazole in recent years. In this focused review, we provide a metaanalysis of studies on benzoxazole in different reaction conditions, catalysts, and starting materials by microwave technique so far, which is different from conventional heating. Methods: Synthesis of different kind of benzoxazole derivatives have been carried out by microwave irradiation. The most used method to obtain benzoxazoles is the condensation of 2-aminophenol or its derivatives with aldehydes, carboxylic acids, nitriles, isocyanates, and aliphatic amines. Results: Benzoxazole system and its derivatives have exhibited a broad range of pharmacological properties. Thus, many scientists have remarked on the importance of the synthesis of different benzoxazole derivatives. Conventional heating is a relatively inefficient and slow method to convey energy in orientation to the reaction medium. However, the microwave-assisted heating technique is a more effective interior heating by straight coupling of microwave energy with the molecules. Conclusion: In this review, different studies were presented on the recent details accessible in the microwave- assisted techniques on the synthesis of the benzoxazole ring. It presents all examples of such compounds that have been reported from 1996 to the present. Benzoxazoles showed an extensive class of chemical substances not only in pharmaceutical chemistry but also in dyestuff, polymer industries, agrochemical, and optical brighteners. Thus the development of fast and efficient achievement of benzoxazoles with a diversity of substituents in high yield is getting more noteworthy. As shown in this review, microwave-assisted synthesis of benzoxazoles is a very effective and useful technique.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2882
Author(s):  
José Miranda de Carvalho ◽  
Cássio Cardoso Santos Pedroso ◽  
Matheus Salgado de Nichile Saula ◽  
Maria Claudia França Cunha Felinto ◽  
Hermi Felinto de Brito

Luminescent inorganic materials are used in several technological applications such as light-emitting displays, white LEDs for illumination, bioimaging, and photodynamic therapy. Usually, inorganic phosphors (e.g., complex oxides, silicates) need high temperatures and, in some cases, specific atmospheres to be formed or to obtain a homogeneous composition. Low ionic diffusion and high melting points of the precursors lead to long processing times in these solid-state syntheses with a cost in energy consumption when conventional heating methods are applied. Microwave-assisted synthesis relies on selective, volumetric heating attributed to the electromagnetic radiation interaction with the matter. The microwave heating allows for rapid heating rates and small temperature gradients yielding homogeneous, well-formed materials swiftly. Luminescent inorganic materials can benefit significantly from the microwave-assisted synthesis for high homogeneity, diverse morphology, and rapid screening of different compositions. The rapid screening allows for fast material investigation, whereas the benefits of enhanced homogeneity include improvement in the optical properties such as quantum yields and storage capacity.


2011 ◽  
Vol 64 (11) ◽  
pp. 1522 ◽  
Author(s):  
Manuela Oliverio ◽  
Antonio Procopio ◽  
Toma N. Glasnov ◽  
Walter Goessler ◽  
C. Oliver Kappe

Finding environmentally gentle methods to graft Lewis acid on the surface of mesoporous materials is a topic of current interest. Herein we describe the optimization of a preparation procedure of a mesoporous silica-supported ErIII catalyst using the microwave-assisted post-calcination functionalization of Mobil Composition of Matter-41 silica as the key step. The required time for functionalization was reduced from several hours to 10 min using sealed-vessel microwave technology. Control experiments using conventional heating at the same temperature demonstrated that the rate increase is owing to a simple thermal/kinetic effect as a result of the higher reaction temperature. The resulting ErIII catalyst was tested for the first time as a catalyst in the continuous flow deprotection of benzaldehyde dimethylacetal and a complete leaching study was performed.


2013 ◽  
Vol 830 ◽  
pp. 230-233 ◽  
Author(s):  
Jian Sun ◽  
Shan Shan Gong ◽  
Qi Sun

Treatment of tert-butyldimethylsilyl (TBDMS) ethers of nucleosides with bromo-trichloromethane (CBrCl3) in methanol under ultrasonic conditions provides a mild and efficient method for desilylation. The experimental results showed that the employment of ultrasonic could notably improve the reaction efficiency compared with thermal heating condition.


2021 ◽  
Vol 18 ◽  
Author(s):  
Antônio S. Machado ◽  
Flávio S. de Carvalho ◽  
Rayssa B.P. Mouraa ◽  
Lorrayne S. Chaves ◽  
Luciano M. Lião ◽  
...  

Background: Molecules containing the pyrazole subunit considered that privileged scaffolds are of high importance due to their broad spectrum of pharmacological activities. For this reason, a method that is more efficient needs to be developed for the preparation of pyrazole derivatives. Objective: The purpose of this study was the optimisation of the conventional synthesis of the pyrazole ring and the oxidation of phenyl-1H-pyrazole-4-carbaldehyde to phenyl-1H-pyrazole-4-carboxylic acid through Microwave-Assisted Organic Synthesis (MAOS). Method: We performed a comparison between conventional synthesis and conventional synthesis with microwave heating using the synthesis of pyrazole ring described by Finar and Godfrey and, for the oxidation of phenyl-1H-pyrazole-4-carbaldehyde, the method described by Shriner and Kleiderer was used. Results: MAOS reduces the reaction time to obtain all compounds compared to conventional heating. At a temperature of 60°C, 5 minutes of reaction time, and power of 50W, the yield of phenyl-1H-pyrazoles (3a-m) compounds was in the range of 91 - 98% using MAOS, which is better than conventional heating (73 - 90%, 75ºC, 2 hours). An improvement in the yield for the oxidation reaction was also achieved with MAOS. The compounds (5a-m) were obtained with yields ranging from 62 - 92% (80ºC, 2 minutes, 150W), while the yields with conventional heating were in the range of 48 - 85% (80ºC, 1 hour). The 26 compounds were achieved through an easy work-up procedure with no chromatographic separation. The pure products were characterised by the spectral data obtained from IR, MS, 1H and 13C NMR or HSQC/HMBC techniques. Conclusion: The advantages of MAOS include short reaction time and increased yield, due to which it is an attractive option for the synthesis of pyrazole compounds.


2021 ◽  
Vol 08 ◽  
Author(s):  
Geetanjali ◽  
Ram Singh

: Most of the traditional methods for organic synthesis have been associated with environmental concern. The transition from traditional to modern methods of synthesis is mainly based on principles of green chemistry to achieve better sustainability by reducing the negative impact on the environment and health. It has been found that microwaves as an energy source in organic synthesis have a great advantage over conventional heating. Microwave-assisted reactions are energy efficient and hence, brought themselves in the preview green chemistry principles. The use of safer solvents is another important principle of green chemistry. The use of water as a solvent in organic synthesis has great benefits over the use of hazardous organic solvents in terms of environment and safety. This study will cover the use of both microwave and water simultaneously in organic reactions.


Sign in / Sign up

Export Citation Format

Share Document