Isolation and Characteristics of Heterotrophic Nitrification-Aerobic Denitrification Bacterium, Bacillus cereus X7 at High Salinity

2013 ◽  
Vol 864-867 ◽  
pp. 111-114 ◽  
Author(s):  
Ru Lei Yao ◽  
Li Na Qiu ◽  
Wei Wei Zhang ◽  
Ai Jun Gong ◽  
Zi Yu Wang ◽  
...  

Biological nitrogen removal has been focused on in wastewater treatment field recently. A strain X7 was isolated from the sediment of pickle foodstuff wastewater. Based on its 16S rDNA sequence analysis, X7 was identified as Bacillus cereus. At NaCl concentration of 20 g/L, NH4+-N removal rate achieved 99.18%, when NO2--N and NO3--N removal rates were 77.24% and 68.6%, respectively. When NaCl concentration ranged from 0 to 40 g/L, the removal rate of NH4+-N was more than 97.59%. Therefore, due to the high nitrogen removal rate and excellent salt tolerance, Bacillus cereus X7 had a broad application prospect in the biodenitrification of brine wastewater.

2019 ◽  
Vol 69 (13) ◽  
pp. 1425-1433 ◽  
Author(s):  
Te Wang ◽  
Zhengzhong Jiang ◽  
Wenbo Dong ◽  
Xiaoya Liang ◽  
Linghua Zhang ◽  
...  

Abstract Purpose At present, the nitrogen (N) removal efficiency of the microbial treatment in the high-salinity nitrogenous wastewaters is relatively low. Study on the N removal behavior and properties of moderately halophilic bacteria Halomonas under high salinity is of great significance for the microbial treatment of high-salinity nitrogenous wastewater. Methods The response mechanism of Halomonas sp. B01 to high osmotic pressure stress was investigated by measuring the compatible solute ectoine concentration and superoxide dismutase (SOD) activity. The salt tolerance during growth and N removal of the strain was evaluated by measuring the activities of growth-related and N removal–related enzymes and the mRNA expression abundance of ammonia monooxygenase-encoding gene (amoA). The process of simultaneous heterotrophic nitrification and aerobic denitrification (SND) under high salinity was described by measuring the concentration of inorganic N. Result Halomonas sp. B01 synthesized ectoine under NaCl stress, and the intracellular ectoine concentration increased with increased NaCl concentration in the growth medium. When the NaCl concentration of the medium reached 120 g L−1, the malondialdehyde concentration and SOD activity were significantly increased to 576.1 μg mg−1 and 1.7 U mg−1, respectively. The growth-related and N removal–related enzymes of the strain were active or most active in medium with 30–60 g L−1 NaCl. The amoA of the strain cultured in medium with 60 g L−1 NaCl had the highest mRNA expression abundance. In the N removal medium containing 60 g L−1 NaCl and 2121 mg L−1 NH4+-N, SND by Halomonas sp. B01 was performed over 96 h and the N removal rate reached 98.8%. Conclusion In addition to the protective mechanism of synthetic compatible solutes, Halomonas sp. B01 had the repair mechanism of SOD for lipid peroxidation. The growth-related and N removal–related enzymes of the strain were most active at a certain salt concentration; amoA also had the highest mRNA expression abundance under high salinity. Halomonas sp. B01 could efficiently perform N removal by SND under high salinity.


2013 ◽  
Vol 295-298 ◽  
pp. 1039-1044 ◽  
Author(s):  
Jian Lei Gao ◽  
Bing Nan Lv ◽  
Yi Xin Yan ◽  
Jian Ping Wu

The pilot-scale Anoxic-Anaerobic-Microaerobic-Aerobic (A2O2) biological nitrogen removal process was used to treat the wastewater from nitrogenous fertilizer production with C/N ratio of 1~2. Batch tests were conducted to investigate the patial nitrification using the activated sludge from the microaerobic tank rich in nitrite bacteria as the experimental object. Results showed that 95% removal efficiency of NH3-N could be obtained with the HRT of 30 h. The SVI affected the NH3-N removal rate and the optimal SVI was 106 mL/g. The ORP was well correlated with the logarithm of NH3-N concentration with the linear regression equation of y=-57.233x+3.308. Moreover, the kinetic model for partial nitrification was determined as v=4.762s/(9.86+s).


2006 ◽  
Vol 53 (6) ◽  
pp. 51-58 ◽  
Author(s):  
L. J. Hughes ◽  
J. Lancaster ◽  
R. Cord-Ruwisch

The feasibility of combining a previously reported storage driven denitrification biofilm, where 80% of influent acetate can be converted to poly-beta-hydroxybutyrate (PHB), with a suitable nitrification reactor, either submerged or trickling filter design, to achieve complete biological nitrogen removal was tested. The reactor system showed the potential of complete biological nitrogen removal of waste streams with a C/N ratio as low as 3.93 kg COD/kg N-NH3 at an overall nitrogen removal rate of 1.1 mmole NH3/L/h. While the efficiency and the rates of nitrogen removal were higher than what is observed in traditional or simultaneous nitrification and denitrification (SND) systems, there were two problems that require further development: (a) the incomplete draining of the reactor caused ammonia retention and release in the effluent, limiting the overall N-removal and (b) pH drifts in the nitrification step slowed down the rate of nitrification if not corrected by appropriate pH adjustment or buffering.


2021 ◽  
Author(s):  
Jie Jiang ◽  
XiaoyanXu ◽  
Zhina Guo ◽  
Lianglun Sun ◽  
Meizhen Tang

Abstract In this study, biochar BC400 and BC700 were prepared, characterized and coupled with heterotrophic nitrification-aerobic denitrification (HNAD) strain Z03 for nitrogen removal experiments. The characterization results showed that BC700 has a higher specific surface area and a more complex multilayered pore structure, with increased aromatic condensation and higher crystallinity. BC400 and BC700 both have good redox activity, while BC400 has stronger electron donor capacities and BC700 owns better electron transfer properties. In addition, both BC400 and BC700 contain relatively high levels of dissolved organic carbon (DOC), reaching at 62.95 and 51.617mg/g respectively. BC400/BC700 coupled with strain Z03 can significantly improve the NH4+-N removal performance of low-temperature and low C/N wastewater compared with the control group. At a dosage of 4.0 g/L, the removal rate of NH4+-N reached to 95.16% (BC400 + Z03) and 84.37% (BC700 + Z03) within 72h, respectively. Higher than the sum of adsorption by BC400/BC700 (16.19%/18.85%) and microbial degradation (41.03%). Besides, the BC400 + BC700 + Z03 NH4+-N removal systems provide higher nitrogen removal efficiencies than BC400/BC700 + Z03 nitrogen removal systems. When the dosage (BC400 + BC700, mass ratio 5:1) reaches 3.0g/L, it can achieve more than 90% NH4+-N removal rate within 48h. The reasons for the promotion of biochar on microbial denitrification were analyzed as follows: 1) DOC can provide an additional carbon source for microorganisms; 2) biochar, as a pH buffer, can neutralize the acidity due to nitrification; 3) BC400 and BC700, as materials with good redox activity, may play a role in promoting the activity of electron transfer system and enzyme activity.


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1051 ◽  
Author(s):  
Zizhen Zhou ◽  
Tinglin Huang ◽  
Weijin Gong ◽  
Yang Li ◽  
Yue Liu ◽  
...  

A field scale experiment was performed to explore the nitrogen removal performance of the water and surface sediment in a deep canyon-shaped drinking water reservoir by operating WLAs (water-lifting aerators). Nitrogen removal performance was achieved by increasing the densities and N-removal genes (nirK and nirS) of indigenous aerobic denitrifiers. After the operation of WLAs, the total nitrogen removal rate reached 29.1 ± 0.8% in the enhanced area. Ammonia and nitrate concentrations were reduced by 72.5 ± 2.5% and 40.5 ± 2.1%, respectively. No nitrite accumulation was observed. Biolog results showed improvement of carbon metabolism and carbon source utilization of microbes in the enhanced area. Miseq high-throughput sequencing indicated that the denitrifying bacteria percentage was also higher in the enhanced area than that in the control area. Microbial communities had changed between the enhanced and control areas. Thus, nitrogen removal through enhanced indigenous aerobic denitrifiers by the operation of WLAs was feasible and successful at the field scale.


2015 ◽  
Vol 50 (3) ◽  
pp. 219-227 ◽  
Author(s):  
Maohong Zhou ◽  
Hairen Ye ◽  
Xiaowei Zhao

The effects of culture conditions on a newly isolated Pseudomonas stutzeri KTB's ability to simultaneously perform heterotrophic nitrification and aerobic denitrification were investigated to determine its potential of application in nitrogen removal from wastewater. The results from experiments in the presence of 10 mmol/L of ammonium were as follows: succinate was the preferred carbon source, and the optimum C/N ratio, temperature, and initial pH were 10, 30 °C, and 7–8, respectively. Nitrogen removal took place not only in the logarithmic phase but also in the stationary phase. Under the optimum conditions, the nitrogen removal rate increased as the ammonium concentration elevated, until it was as high as 60 mmol/L. Meanwhile, the maximum specific growth rate decreased. The highest nitrogen removal rate of 0.977 mmol/L/h was observed at 60 mmol/L of ammonium and the maximum removal ratio of 85.6% at 40 mmol/L when the bacterial treatment for 48 h was completed. The strain was vulnerable to even higher ammonium loads. When incubated in anaerobically digested hennery wastewater containing 43.85 mmol/L of ammonium and 2.32 mmol/L of nitrate, the removal ratio and rate reached 82.4% and 0.397 mmol/L/h, respectively. The strain might be a great candidate for ammonium removal from wastewater.


2018 ◽  
Vol 78 (9) ◽  
pp. 1843-1851 ◽  
Author(s):  
İ. Çelen-Erdem ◽  
E. S. Kurt ◽  
B. Bozçelik ◽  
B. Çallı

Abstract The sludge digester effluent taken from a full scale municipal wastewater treatment plant (WWTP) in Istanbul, Turkey, was successfully deammonified using a laboratory scale two-stage partial nitritation (PN)/Anammox (A) process and a maximum nitrogen removal rate of 1.02 kg N/m3/d was achieved. In the PN reactor, 56.8 ± 4% of the influent NH4-N was oxidized to NO2-N and the effluent nitrate concentration was kept below 1 mg/L with 0.5–0.7 mg/L of dissolved oxygen and pH of 7.12 ± 12 at 24 ± 4°C. The effluent of the PN reactor was fed to an upflow packed bed Anammox reactor where high removal efficiency was achieved with NO2-N:NH4-N and NO3-N:NH4-N ratios of 1.32 ± 0.19:1 and 0.22 ± 0.10:1, respectively. The results show that NH4-N removal efficiency up to 98.7 ± 2.4% and total nitrogen removal of 87.7 ± 6.5% were achieved.


2013 ◽  
Vol 67 (12) ◽  
pp. 2677-2684 ◽  
Author(s):  
M. Christensson ◽  
S. Ekström ◽  
A. Andersson Chan ◽  
E. Le Vaillant ◽  
R. Lemaire

ANITA™ Mox is a new one-stage deammonification Moving-Bed Biofilm Reactor (MBBR) developed for partial nitrification to nitrite and autotrophic N-removal from N-rich effluents. This deammonification process offers many advantages such as dramatically reduced oxygen requirements, no chemical oxygen demand requirement, lower sludge production, no pre-treatment or requirement of chemicals and thereby being an energy and cost efficient nitrogen removal process. An innovative seeding strategy, the ‘BioFarm concept’, has been developed in order to decrease the start-up time of new ANITA Mox installations. New ANITA Mox installations are started with typically 3–15% of the added carriers being from the ‘BioFarm’, with already established anammox biofilm, the rest being new carriers. The first ANITA Mox plant, started up in 2010 at Sjölunda wastewater treatment plant (WWTP) in Malmö, Sweden, proved this seeding concept, reaching an ammonium removal rate of 1.2 kgN/m3 d and approximately 90% ammonia removal within 4 months from start-up. This first ANITA Mox plant is also the BioFarm used for forthcoming installations. Typical features of this first installation were low energy consumption, 1.5 kW/NH4-N-removed, low N2O emissions, <1% of the reduced nitrogen and a very stable and robust process towards variations in loads and process conditions. The second ANITA Mox plant, started up at Sundets WWTP in Växjö, Sweden, reached full capacity with more than 90% ammonia removal within 2 months from start-up. By applying a nitrogen loading strategy to the reactor that matches the capacity of the seeding carriers, more than 80% nitrogen removal could be obtained throughout the start-up period.


2019 ◽  
Vol 9 (9) ◽  
pp. 1937 ◽  
Author(s):  
Yinyan Chen ◽  
Peng Jin ◽  
Zhiwen Cui ◽  
Tao Xu ◽  
Ruojin Zhao ◽  
...  

Herein, we isolated Janthinobacterium svalbardensis F19 from sludge sediment. Strain F19 can simultaneously execute heterotrophic nitrification and aerobic denitrification under aerobic conditions. The organism exhibited efficient nitrogen removal at a C/N ratio of 2:1, with an average removal rate of 0.88 mg/L/h, without nitrite accumulation. At a C/N ratio of 2, an initial pH of 10.0, a culturing temperature of 25 °C, and sodium acetate as the carbon source, the removal efficiencies of ammonium, nitrate, nitrite, and hydroxylamine were 96.44%, 92.32%, 97.46%, and 96.69%, respectively. The maximum removal rates for domestic wastewater treatment for ammonia and total nitrogen were 98.22% and 92.49%, respectively. Gene-specific PCR amplification further confirmed the presence of napA, hao, and nirS genes, which may contribute to the heterotrophic nitrification and aerobic denitrification capacity of strain F19. These results indicate that this bacterium has potential for efficient nitrogen removal at low C/N ratios from domestic wastewater.


2017 ◽  
Vol 76 (2) ◽  
pp. 386-395 ◽  
Author(s):  
Te Wang ◽  
Jian Li ◽  
Ling Hua Zhang ◽  
Ying Yu ◽  
Yi Min Zhu

To improve the efficiency of simultaneous heterotrophic nitrification and aerobic denitrification (SND) at high concentrations of NaCl and ammonia nitrogen (NH4+—N), we investigated the SND characteristics of Halomonas bacteria with the ability to synthesize the compatible solute ectoine. Halomonas sp. strain B01, which was isolated, screened and identified in this study, could simultaneously remove nitrogen (N) by SND and synthesize ectoine under high NaCl conditions. Gene cloning and sequencing analysis indicated that this bacterial genome contains ammonia monooxygenase (amoA) and nitrate reductase (narH) genes. Optimal conditions for N removal in a solution containing 600 mg/L NH4+–N were as follows: sodium succinate supplied as organic carbon (C) source at a C/N ratio of 5, pH 8 and shaking culture at 90 rpm. The N removal rate was 96.0% under these conditions. The SND by Halomonas sp. strain B01 was performed in N removal medium containing 60 g/L NaCl and 4,000 mg/L NH4+–N; after 180 h the residual total inorganic N concentration was 21.7 mg/L and the N removal rate was 99.2%. Halomonas sp. strain B01, with the ability to synthesize the compatible solute ectoine, could simultaneously tolerate high concentrations of NaCl and NH4+–N and efficiently perform N removal by SND.


Sign in / Sign up

Export Citation Format

Share Document