Bending Strength of Glulam from Selected Malaysian Hardwood Timber

2014 ◽  
Vol 879 ◽  
pp. 237-244 ◽  
Author(s):  
Wan Hazira Wan Mohamad ◽  
Zakiah Ahmad ◽  
Ashari Abd. Jalil

Malaysian government has already built the first glulam structure in Malaysia with the aim of demonstrating the potentialities of using indigenous hardwood timber for glulam. Since Malaysia possesses a vast variety of timber species, hence there is a need to identify suitable species for glulam manufacturing. This paper presents the bending performance of Malaysian hardwood glulam beams, manufactured from different categories namely heavy, medium and light hardwood timbers. A series of tests were carried out on the glulam beam that includes bending test, delamination test and shear test of glue line. Results in this study will be useful to manufacturers interested in using Malaysian hardwood for glulam beams.

2012 ◽  
Vol 174-177 ◽  
pp. 1047-1050 ◽  
Author(s):  
Ying Wu ◽  
Qiao Yao Sun ◽  
Wei Li

The bending strength and crack-resistance performance of blank concretes are poor, which are not favorable to the sustainable development of infrastructure. Engineered cementitious composite (ECC) is a high performance fiber-reinforced cementitious composite designed with micromechanical principles, which can improve concrete bending performance to prolong service life and to reduce maintenance cost of infrastructure, so there is important significance for sustainable development of infrastructure. In this study, we have experimentally evaluated the effectiveness of bending and crack-resistance performance of concretes reinforced by different kinds of fibers which include UF500 cellulose fiber (UF500), polyvinyl alcohol (PVA) fiber, polypropylene (PP) fiber and hybrid-fiber (PVA and UF500 cellulose fibers), respectively. The bending performance of concrete with different kinds of fibers is better than that of blank concrete. In addition, early crack-resistance performance of hybrid-fibres enhanced samples has been improved as confirmed by the three-point bending test.


2016 ◽  
Vol 847 ◽  
pp. 3-9 ◽  
Author(s):  
Xian Yan Zhou ◽  
Lei Cao ◽  
Dan Zeng

At present, design values in codes and regulations are mainly based on test results of small size specimens, which are different from large-scale members used in practical engineering, therefore size adjustment coefficients are needed to be established. The four-point bending test method was adopted to investigate four groups of different sizes of Larch Glulam beams in their flexural behavior. Experiment data such as ultimate bearing capacity, deflection, strains and others are obtained, and the failure pattern and failure mechanism of bending members are analyzed. The research results indicate that the bending modulus of elasticity of Larch Glulam beam is not affected by the size. Bending strength of the Larch Glulam beam show a declining trend as the size of specimens increases, however, the ultimate bending moment increases. In addition, by means of a two-parameter Weibull model, a so-called size effect coefficient has been calculated by the slope method, thus providing a basis for the design and application of Larch Glulam beams.


2015 ◽  
Vol 744-746 ◽  
pp. 754-757
Author(s):  
Bo Gao ◽  
Min Wang ◽  
Zeng Heng Hao

In combination with the composite material technology, add the glass fiber grid into gussasphalt deck pavement system to form glass fiber grid reinforced gussasphalt. Analysis shows that adding the grid can increase the bending performance. Three point bending test was did to do verification and results were indicate that glass fiber grid can improve the anti-bending strength and anti-bending strain in high temperature.


2021 ◽  
Vol 11 (3) ◽  
pp. 938
Author(s):  
Jie Sheng ◽  
Junwu Xia ◽  
Hongfei Chang

To investigate the residual bending strength of a corroded H-shaped steel beam in an underground coal mining environment, the law governing the degradation of the mechanical properties of corroded steel was first investigated through tensile testing. Subsequently, a four-point bending test was conducted on corroded H-shaped steel beams. The influence of the corrosion rate and sustained loading ratio on the residual bending performance of a corroded H-beam was investigated. The results reveal that the uniform corrosion and uneven corrosion of the steel occurred simultaneously. Additionally, pits with a small size appeared on the steel surface and the number of these pits increased with the corrosion time. Four different fracture modes were observed after the tensile test, and the yield strength and ultimate strength of the corroded steel decreased as the corrosion rate increased. In the bending test, the failure mode of the corroded H-shaped steel beam was not changed by the corrosion. The bearing capacity, stiffness, and ductility of the corroded H-shaped steel beams decreased with the increase in the corrosion rate, and the sustained loading further decreased the bearing capacity. Finally, a simple method for assessing the yield load and ultimate load of corroded H-shaped steel beams is proposed.


2016 ◽  
Vol 78 (5-5) ◽  
Author(s):  
Norshariza Mohamad Bhkari ◽  
Zakiah Ahmad ◽  
Afidah Abu Bakar ◽  
Paridah Md. Tahir

This paper presents a pilot study on bending and shear strength of glued laminated (glulam) timber using selected tropical timber namely, Kekatong (Cynometra spp.) and Melagangai (Potoxylon melagangai) as an alternative for timber railway sleepers. Selected timbers were manufactured in accordance with MS758:2001 and the bending test was conducted according to ASTM D198:2013. The shear test for glue line integrity was performed to observe the bond performance in glulam accordance to MS758:2001.The results showed both species can be used as structural members since the bending strength obtained from the laboratory work is greater than the allowable bending strength. In terms of the percentage of wood failure, the bonding characteristics of both glulam satisfied the bonding requirement stipulated in the standard and have the potential to be used as glulam timber railway sleepers.  


2020 ◽  
Vol 54 (8) ◽  
pp. 1049-1066
Author(s):  
F Balıkoğlu ◽  
N Arslan ◽  
TK Demircioğlu ◽  
O İnal ◽  
M İren ◽  
...  

The aim of this study was to improve four-point bending performance of foam core sandwich composite beams by applying various core machining configurations. Sandwich composites have been manufactured using perforated and grooved foam cores by vacuum-assisted resin transfer moulding method with vinyl-ester resin system. The influence of grooves and perforations on the mechanical performance of marine sandwich composite beams was investigated under four-point bending test considering the weight gain. Bending strength and effective bending stiffness increased up to 34% and 61%, respectively, in comparison to a control beam without core modification. Analytical equations were utilised for calculating the mid-span deflection, equivalent bending stiffness and ultimate bending strength of the sandwich beams. Finite element analysis was also performed to analyse the flexural response of the specimens taking into account the combined effect of orthotropic linear elasticity of the face sheet and the non-linear behaviour of the foam core.


2010 ◽  
Vol 129-131 ◽  
pp. 576-579
Author(s):  
Bing Xue ◽  
Ying Cheng Hu ◽  
Fang Chao Cheng

Laminated Veneer Lumber (LVL) panels made from birch (Betula platyphylla Suk.) veneers were tested for physical and mechanical strength properties in this study. The static bending test were conducted on the LVL, and bending test and shear test were conducted on veneer and three-lamination LVL. The effects of the relative humidity on the modulus of elasticity (MOE) and bending strength (MOR) of birch LVL with vertical load and parallel load were investigated. There were four relative humidities including 40%, 50%, 60% and 70%. The results showed that the MOE and MOR of LVL would diminished with the increase of relative humidity, the bending strength of veneer sample decreased as the relative humidity increased, and there was noticeable effect of relative humidity on shear strength of PF resin.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2602
Author(s):  
Huaqiao Wang ◽  
Jihong Chen ◽  
Zhichao Fan ◽  
Jun Xiao ◽  
Xianfeng Wang

Automated fiber placement (AFP) has been widely used as an advanced manufacturing technology for large and complex composite parts and the trajectory planning of the laying path is the primary task of AFP technology. Proposed in this paper is an experimental study on the effect of several different path planning placements on the mechanical behavior of laminated materials. The prepreg selected for the experiment was high-strength toughened epoxy resin T300 carbon fiber prepreg UH3033-150. The composite laminates with variable angles were prepared by an eight-tow seven-axis linkage laying machine. After the curing process, the composite laminates were conducted by tensile and bending test separately. The test results show that there exists an optimal planning path among these for which the tensile strength of the laminated specimens decreases slightly by only 3.889%, while the bending strength increases greatly by 16.68%. It can be found that for the specific planning path placement, the bending strength of the composite laminates is significantly improved regardless of the little difference in tensile strength, which shows the importance of path planning and this may be used as a guideline for future AFP process.


2012 ◽  
Vol 36 (2) ◽  
pp. 171-176 ◽  
Author(s):  
MM Rahaman ◽  
K Akhter ◽  
D Biswas ◽  
MW Sheikh

Hybrid acacia, produced from natural crossing between two introduced timber species Acacia mangium and A. auriculiformies has been studied for assessing the suitability of plywood and particleboard manufacture. It was found that 1.5 mm thick smooth and figured veneer can be made and dried easily. Three-ply plywood were made using veneer of this species bonded with liquid urea formaldehyde glue of 50% solid content extended with wheat flower and catalyzed (ammonium chloride) with 2% hardener under the specific pressures, viz., 1.05, 1.40 and 1.76 N/mm2 in three replications at 6 minute press time and 120°C press temperature. Dry and wet shear test were conducted on the sample and their shear load at failure per unit area and percentage of wood failure were determined. 1.76 N/mm2 pressure for the manufacture of ply wood is found to be the best. The particleboard was tested for determining the strength and dimensional stability. The bending strength passed the standard specification, tensile strength was found to be low as per Indian standard. DOI: http://dx.doi.org/10.3329/jbas.v36i2.12960 Journal of Bangladesh Academy of Sciences, Vol. 36, No. 2, 171-176, 2012


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fuminobu Ozaki ◽  
Takumi Umemura

PurposeIn this study, the bending strength, flexural buckling strength and collapse temperature of small steel specimens with rectangular cross-sections were examined by steady and transient state tests with various heating and deformation rates.Design/methodology/approachThe engineering stress and strain relationships for Japan industrial standard (JIS) SN400 B mild steels at elevated temperatures were obtained by coupon tests under three strain rates. A bending test using a simple supported small beam specimen was conducted to examine the effects of the deformation rates on the centre deflection under steady-state conditions and the heating rates under transient state conditions. Flexural buckling tests using the same cross-section specimen as that used in the bending test were conducted under steady-state and transient-state conditions.FindingsIt was clarified that the bending strength and collapse temperature are evaluated by the full plastic moment using the effective strength when the strain is equal to 0.01 or 0.02 under fast strain rates (0.03 and 0.07 min–1). In contrast, the flexural buckling strength and collapse temperature are approximately evaluated by the buckling strength using the 0.002 offset yield strength under a slow strain rate (0.003 min–1).Originality/valueRegarding both bending and flexural buckling strengths and collapse temperatures of steel members subjected to fire, the relationships among effects of steel strain rate for coupon test results, heating and deformation rates for the heated steel members were minutely investigated by the steady and transient-state tests at elevated temperatures.


Sign in / Sign up

Export Citation Format

Share Document