The Use of Industrial Waste as a Secondary Raw Material in Restoration Plaster with Thermal Insulating Effect

2014 ◽  
Vol 897 ◽  
pp. 204-214 ◽  
Author(s):  
Vojtěch Václavík ◽  
Jaromír Daxner ◽  
Jan Valíček ◽  
Tomáš Dvorský ◽  
Milena Kušnerová ◽  
...  

The article describes the results of an experimental research dealing with the use of industrial waste in the form of secondary raw material - polyurethane foam after the end of its life cycle, as a 100% substitute of filler in restoration plaster with thermal insulating effect. The article presents the formulas of restoration plaster and its properties. They are: mortar consistency, volume weight, strength characteristics, thermal conductivity coefficient, coefficient of capillary water absorption, porosity and resistance against salts.

Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 599 ◽  
Author(s):  
Hamid R. Taghiyari ◽  
Abolfazl Soltani ◽  
Ayoub Esmailpour ◽  
Vahid Hassani ◽  
Hamed Gholipour ◽  
...  

An issue in engineered wood products, like oriented strand lumber (OSL), is the low thermal conductivity coefficient of raw material, preventing the fast transfer of heat into the core of composite mats. The aim of this paper is to investigate the effect of sepiolite at nanoscale with aspect ratio of 1:15, in mixture with urea-formaldehyde resin (UF), and its effect on thermal conductivity coefficient of the final panel. Sepiolite was mixed with UF resin for 20 min prior to being sprayed onto wood strips in a rotary drum. Ten percent of sepiolite was mixed with the resin, based on the dry weight of UF resin. OSL panels with two resin contents, namely 8% and 10%, were manufactured. Temperature was measured at the core section of the mat at 5-second intervals, using a digital thermometer. The thermal conductivity coefficient of OSL specimens was calculated based on Fourier’s Law for heat conduction. With regard to the fact that an improved thermal conductivity would ultimately be translated into a more effective polymerization of the resin, hardness of the panel was measured, at different depths of penetration of the Janka ball, to find out how the improved conductivity affected the hardness of the produced composite panels. The measurement of core temperature in OSL panels revealed that sepiolite-treated panels with 10% resin content had a higher core temperature in comparison to the ones containing 8% resin. Furthermore, it was revealed that the addition of sepiolite increased thermal conductivity in OSL panels made with 8% and 10% resin contents, by 36% and 40%, respectively. The addition of sepiolite significantly increased hardness values in all penetration depths. Hardness increased as sepiolite content increased. Considering the fact that the amount of sepiolite content was very low, and therefore it could not physically impact hardness increase, the significant increase in hardness values was attributed to the improvement in the thermal conductivity of panels and subsequent, more complete, curing of resin.


2012 ◽  
Vol 714 ◽  
pp. 115-122 ◽  
Author(s):  
Zied Antar ◽  
Hervé Noel ◽  
Jean François Feller ◽  
Patrick Glouannec ◽  
Khaled Elleuch

Usual plate solar collectors, based on a metal absorber (Cu, Al) selectively coated are technologically very sophisticated, expensive to produce and they are great consumer of fossil raw material. Polymeric materials are considered as a promising alternative for many interesting properties; easy moldability, corrosion resistance, they also offer a significant cost-reduction for solar thermal collectors, and a mass production may thus benefit to a broader utilization of solar energy. Most drawbacks of polymers are their low thermal properties; essentially thermal conductivity coefficient may strongly affect the solar absorber efficiency and deteriorate the collector performance. Polymers used in solar collectors are mainly petroleum-derivative product and mass use of them is not a response to environmental concern. That is why the laboratory chose to explore the potentialities of bio-polymers for the production of absorbers. This group of material presents the same properties as ordinary polymers. It is on the other hand possible to modify the thermal properties of the basic matrix by the addition of loads, such as carbon black, graphite or carbon nanotubes. The thermal performance of a solar collector is closely related to the thermal properties of the absorber. Within this framework, many measurements are necessary, more particularly the conductivity, but also emissivity and absorptivity to solar radiation. The aim of this paper is to study the thermal properties of the PLA bio-polymer charged of exfoliated graphite and/or CNT. Thereafter, the total hemispherical absorptivity, an estimation of the total hemispherical emissivity and the thermal conductivity coefficient were measured for different load rates, we will conclude on the interest and the potentialities of tested materials.


2011 ◽  
Vol 71-78 ◽  
pp. 490-493 ◽  
Author(s):  
Zhi Min He ◽  
Jun Zhe Liu ◽  
Tian Hong Wang

This paper presents a laboratory study on the effect of air entraining agent on the performance of thermal insulating mortar with glazed hollow bead. The test results show that with the dosage of air entraining agent increases, the consistency of thermal insulating mortar increases, apparent density, thermal conductivity and drying shrinkage decline, However, the compressive strength greater losses owing to excessive consumption of air entraining agent; air entraining agent within a certain dosage can significantly improve the operating performance of thermal insulation mortar, increase its consistency and reduce its apparent density, thermal conductivity coefficient and drying shrinkage. Due to excessive addition of air entraining agent, the apparent density, thermal conductivity and compressive strength of thermal insulation mortar all increase. For a specific insulation mortar, there will exist the best mixing amount of air entraining agent.


2020 ◽  
Vol 12 (12) ◽  
pp. 4841
Author(s):  
Maria Teresa Ferrandez-Garcia ◽  
Antonio Ferrandez-Garcia ◽  
Teresa Garcia-Ortuño ◽  
Clara Eugenia Ferrandez-Garcia ◽  
Manuel Ferrandez-Villena

The manufacture of technical materials of mineral and synthetic origin currently used for thermal insulation in buildings consumes a large amount of energy and they are not biodegradable. In order to reduce the environmental problems generated by their manufacture, an increasing amount of research is being carried out on the use of renewable and ecological resources. Consequently, the use of plant fibers and natural adhesives in the development of new thermal insulating products is increasing worldwide. Palm trees were used as a replacement for wood in some traditional constructions in places with scarce wood resources. This paper discusses the use of palm pruning waste in the manufacture of particleboards, using citric acid as a natural binder. Five particle sizes of Washingtonia palm rachis were used as the raw material for manufacturing the boards and the citric acid content was set at 10% by weight, in relation to the weight of the rachis particles. Single-layer agglomerated panels were made, applying a pressure of 2.6 MPa and a temperature of 150 °C for 7 min. Twenty panels were produced and their density, thickness swelling, water absorption, modulus of rupture, internal bonding strength and thermal conductivity properties were studied. Smaller particle size resulted in better mechanical properties. The boards had an average thermal conductivity of 0.084 W/m·K, meaning that these boards could be used for thermal insulation in buildings.


2011 ◽  
Vol 250-253 ◽  
pp. 502-506
Author(s):  
Jin Xiu Gao ◽  
Xiao Shan Wang ◽  
Lu Bao Li ◽  
Hua Ruan ◽  
Hao Chi Tu ◽  
...  

In recent years, many buildings went up in flames one after another. It is thought-provoking. So the fire-proof property should be considered into one of the most important performance of the building thermal insulation materials. As a result, the study on the expanded perlite lightweight porous inorganic material heated up fast although its application still has some problems to be solved. In this paper, we take the expanded perlite as raw material to make thermal insulation board, and then study on the effect of volume weight on the coefficient of thermal conductivity and tensile strength. What is more important, we find that a new binding agent of Na2O-B2O3-SiO2 syetem sol contributes to improving its water resistance.


1970 ◽  
Vol 17 (2) ◽  
pp. 208-212 ◽  
Author(s):  
Jolanta VĖJELIENĖ ◽  
Albinas GAILIUS ◽  
Sigitas VĖJELIS ◽  
Saulius VAITKUS ◽  
Giedrius BALČIŪNAS

The development of new thermal insulation materials needs to evaluate properties and structure of raw material, technological factors that make influence on the thermal conductivity of material. One of the most promising raw materials for production of insulation material is straw. The use of natural fibres in insulation is closely linked to the ecological building sector, where selection of materials is based on factors including recyclable, renewable raw materials and low resource production techniques In current work results of research on structure and thermal conductivity of renewable resources for production thermal insulating materials are presented. Due to the high abundance of renewable resources and a good its structure as raw material for thermal insulation materials barley straw, reeds, cattails and bent grass stalks are used. Macro- and micro structure analysis of these substances is performed. Straw bales of these materials are used for determining thermal conductivity. It was found that the macrostructure has the greatest effect on thermal conductivity of materials. Thermal conductivity of material is determined by the formation of a bale due to the large amount of pores among the stalks of the plant, inside the stalk and inside the stalk wall.http://dx.doi.org/10.5755/j01.ms.17.2.494


2020 ◽  
Vol 832 ◽  
pp. 29-38
Author(s):  
Marek Jašek ◽  
Barbora Hrubá ◽  
Filip Khestl ◽  
Petr Kurečka ◽  
Jiří Teslík

The paper deals with the research on the properties of secondary raw materials resulting from the recycling of used tyres and their potential utilization for the production of construction insulations. Evaluation of the possibilities of utilization and a complex analysis has been executed on the basis of the defined basic physical, thermal-insulating and fire properties of the raw textile fibres examined. The results of the research on the material examined indicate possible exploitation of this potential material for the construction of environmentally-friendly objects. Thermal insulating parameters have been determined by the value of thermal conductivity coefficient λ. For measuring of thermal conductivity coefficient of fibres has been used the special laboratory device – the Cooling Box. Physical properties have been determined by microscopic examination and by laboratory measuring of fibres length, diameter, pour bulk and compressed bulk densities. Fire characteristics were determined during several fire tests of textile fibres. On the basis of performed fire test has been determined the combustion heat, flash point (FIT) and ignition temperature (SIT).


2012 ◽  
Vol 482-484 ◽  
pp. 1570-1575
Author(s):  
Jiri Zach ◽  
Jitka Peterková ◽  
Martin Sedlmajer

There has been a substantional increase of atributes for building constructions in area of thermal protection in last decade. This was shown as increasing of requirements for materials and components intended for building of cover constructions as well. In case of shaped bricks used for perimeter walls advanced production technologies were applied. These technologies consist of decreasing thermal conductivity coefficient for brick clinker, of decreasing inner ribs thickness and in last years this concerns the technology of filling inner cavities of shaped bricks with thermal insulating materials as well. This paper describes possibilities of using alternative raw material sources (natural fibres originated in agriculture, separate textile waste, ....) as integrated insulating layers in contemporary ceramic shaped bricks with high usable qualities.


Designs ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 57
Author(s):  
Nusrat Jannat ◽  
Rafal Latif Al-Mufti ◽  
Aseel Hussien ◽  
Badr Abdullah ◽  
Alison Cotgrave

Sawdust, which is a waste/by-product of the wood/timber industry, can be utilised as a valuable raw material in building material production due to its abundance and low cost. However, the application of sawdust in the manufacture of unfired clay blocks has received little investigation. Furthermore, the impact of different sawdust particle sizes on the properties of unfired clay blocks has not been studied. Therefore, this study screened sawdust at three different particle sizes: SP-a (212 μm < x < 300 μm), SP-b (425 μm < x < 600 μm) and SP-c (1.18 mm < x < 2.00 mm), to examine their effects on the physical and mechanical properties of unfired clay blocks. The density, linear shrinkage, capillary water absorption and flexural and compressive strengths were among the tests performed. Different sawdust percentages, i.e., 2.5%, 5%, 7.5% and 10% of the total weight of the clay, were considered. The tests results show that when sawdust was added to the mixture, the density of the samples reduced for all particle sizes. However, the linear shrinkage increased in SP-a samples but decreased in the other two particle size samples as the sawdust percentage increased from 2.5% to 10%. On the other hand, the capillary water absorption coefficient increased while the strength decreased with increasing sawdust content for all three groups. The highest compressive strength (CS) and flexural strength (FS) were achieved at 2.5% of sawdust content. Furthermore, it was observed that SP-b (CS—4.74 MPa, FS—2.00 MPa) samples showed the highest strength followed by SP-a (CS—4.09 MPa, FS—1.69 MPa) and SP-c (CS—3.90 MPa, FS—1.63 MPa) samples. Consequently, good-quality unfired clay blocks can be manufactured using sawdust up to 2.5% with particle sizes ranging between 600 and 425 μm.


2017 ◽  
Vol 908 ◽  
pp. 21-25
Author(s):  
Karel Kulísek ◽  
Dominik Gazdič ◽  
Karel Dvořák

Fluidized bed ash, which is the youngest industrial waste can be considered on the basis of research, a high-quality secondary raw material base which can be easily used in the production of Portland cements and, in general, other hydraulic binders. Regarding the direct effect of anhydrite on the course of hydrating mixed cement with the fluidized fly ash and the consequent behaviour of the originated cement stone, its reaction with clinker materials on the mentioned Aft (Al2O3–Fe2O3-–tri) phase is clear. The creation of AFt phases, if they originate additionally, due to their morphology, is accompanied by significant volume changes which may lead to deformation up to the destruction of the cement stone. Some foreign publications show the possibility of the transformation of this thermo-dynamically unstable mineral into the further mineral from the group AFt phase, which is thaumasite, Ca3Si (CO3)(SO4)(OH)6.12H2O.


Sign in / Sign up

Export Citation Format

Share Document