Impact of Laser Parameters on the Contrasts of Laser Direct Marked Data Matrix Symbols on Titanium Alloy Substrates

2014 ◽  
Vol 915-916 ◽  
pp. 1018-1022 ◽  
Author(s):  
Chun Ling Li

To determine the impact of laser parameters on the contrasts of laser direct marked Data Matrix symbols on titanium alloys, a Q-switched Nd:YAG laser was used in the marking process. For this purpose, four laser marking parameters (i.e. electric current, effective vector step, Q-switch frequency, and laser line spacing) were correlated with the symbol contrast (SC). The L25 orthogonal array based on the Taguchi experimental method was adopted to determine the optimal combination levels of laser parameters for the SC, and the experimental data were statistically analyzed by multi-factor analysis of variance (ANOVA). Experimental results showed that the electric current, effectie vector step, laser line spacing have a statistically significant impact on the contrasts of laser marked Data Matrix symbols. Q-switch frequency is statistically insignificant at a 5% level. The optimal combination levels of laser parameters for the SC is where the electric current is at 26A, the effective vector step is at 0.001mm, the laser line spacing is at 0.01mm, and Q-switch frequency is at 5kHz.

2014 ◽  
Vol 915-916 ◽  
pp. 1027-1031 ◽  
Author(s):  
Chun Ling Li

To identify critical laser marking parameters which have a statistically significant effect on the contrasts of laser marked Data Matrix symbols on titanium alloy substrates, a Q-switched Nd:YAG laser was used in the laser marking process. The influence of six laser marking parameters (i.e. electric current, effective vector step, delay between the effective vector step, Q-switch frequency, Q release time, and laser line spacing) on the contrasts of laser marked Data Matrix symbols were studied. Single-factor analysis of variance(ANOVA) tests with a 95% confidence level were employed to determine whether a laser parameter had a statistically significant impact on the contrasts of laser marked Data Matrix symbols. Experimental results showed that four laser marking parameters (i.e. electric current, effective vector step, Q-switch frequency, and laser line spacing) have a statistically significant effect on the contrasts of laser marked Data Matrix symbols.


2011 ◽  
Vol 20 (08) ◽  
pp. 1735-1754 ◽  
Author(s):  
M. MOHERY ◽  
M. ARAFA

The present paper deals with the interactions of 22 Ne and 28 Si nuclei at (4.1–4.5)A GeV /c with emulsion. Some characteristics of the compound multiplicity nc given by the sum of the number of shower particles ns and grey particles ng have been investigated. The present experimental data are compared with the corresponding ones calculated according to modified cascade evaporation model (MCEM). The results reveal that the compound multiplicity distributions for these two reactions are consistent with the corresponding ones of MCEM data. It can also be seen that the peak of these distributions shifts towards a higher value of nc with increasing projectile mass. It may further be seen that the compound multiplicity distributions becomes broader with increasing target size and its width increases with the size of the projectile nucleus. In addition, it has been found that the MCEM can describe the compound multiplicity characteristics of the different projectile, target and the correlation between different emitted particles. The values of average compound multiplicity increase with increasing mass of the projectile. Furthermore, it is observed that while the value of 〈nc〉 depends on the mass number of the projectile Ap and the target mass number At, the value of the ratio 〈nc〉/D(nc) seems to be independent of Ap and At. The impact parameter is found to affect the shape of the compound multiplicity distribution. Finally, the dependence of the average compound multiplicity on the numbers of grey and black particles, and the sum of them, is obvious. The values of the slope have been found to be independent of the projectile nucleus.


2021 ◽  
pp. 204141962110377
Author(s):  
Yaniv Vayig ◽  
Zvi Rosenberg

A large number of 3D numerical simulations were performed in order to follow the trajectory changes of rigid CRH3 ogive-nosed projectiles, impacting semi-infinite metallic targets at various obliquities. These trajectory changes are shown to be related to the threshold ricochet angles of the projectile/target pairs. These threshold angles are the impact obliquities where the projectiles end up moving in a path parallel to the target’s face. They were found to depend on a non-dimensional entity which is equal to the ratio between the target’s resistance to penetration and the dynamic pressure exerted by the projectile upon impact. Good agreement was obtained by comparing simulation results for these trajectory changes with experimental data from several published works. In addition, numerically-based relations were derived for the penetration depths of these ogive-nosed projectiles at oblique impacts, which are shown to agree with the simulation results.


2021 ◽  
Author(s):  
Ghazanfar Mehdi ◽  
Maria Grazia De Giorgi ◽  
Donato Fontanarosa ◽  
Sara Bonuso ◽  
Antonio Ficarella

Abstract This study focused on the comparative analysis about the production of ozone and active radicals in presence of nanopulsed plasma discharge on air and on fuel/air mixture to investigate its effect on combustion enhancement. This analysis is based on numerical modeling of air and methane/air plasma discharge with different repetition rates (100 Hz, 1000 Hz and 10000 Hz). To this purpose, a two-step approach has been proposed based on two different chemistry solvers: a 0-D plasma chemistry solver (ZDPlasKin toolbox) and a combustion chemistry solver (CHEMKIN software suite). Consequently, a comprehensive chemical kinetic scheme was generated including both plasma excitation reactions and gas phase reactions. Validation of air and methane/air mechanisms was performed with experimental data. Kinetic models of both air and methane/air provides good fitting with experimental data of O atom generation and decay process. ZDPlasKin results were introduced in CHEMKIN in order to analyze combustion enhancement. It was found that the concentrations of O3 and O atom in air are higher than the methane/air activation. However, during the air activation peak concentration of ozone was significantly increased with repetition rates and maximum was observed at 10000 Hz. Furthermore, ignition timings and flammability limits were also improved with air and methane/air activation but the impact of methane/air activation was comparatively higher.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Bryana N Harris ◽  
Laura Woo ◽  
Jeffrey J Saucerman

Rationale: Heart failure is caused by the inability of adult mammalian hearts to overcome the loss of cardiomyocytes (CMs). This is due partly to the limited proliferative capacity of CMs, which exit the cell cycle and do not undergo cell division. Current knowledge in cardiac regeneration lacks an understanding of the molecular regulatory networks that determine whether CMs will progress through the cell cycle to proliferate. Our goal is to use computational modeling to understand the expression and activation levels of the core cell cycle network, specifically cyclins and cyclin-cyclin-dependent kinase (CDK) complexes. Methods: A model of core cell cycle dynamics was curated using previously published studies of CM proliferation regulators. This model incorporates those regulators known to stimulate G1/S and G2/M transitions through the core CDKs. The activity of each of the 22 network nodes (22 reactions) was predicted using a logic-based differential equation approach. The CDK model was then coupled with a minimal ODE model of cell cycle phase distributions and validated based on descriptions and experimental data from the literature. To prioritize key nodes for experimental validation, we performed a sensitivity analysis by stimulating individual knockdown for every node in the network, measuring the fractional activity of all nodes. Results: Our model confirmed that the knockdown of p21 and Rb protein and the overexpression of E2F transcription factor and cyclinD-cdk4 showed an increase in cells going through DNA synthesis and entering mitosis. A combined knockdown of p21 and p27 showed an increase of cells entering mitosis. Cyclin D-cdk4 and p21 overexpression showed a decrease and increase of Rb expression, respectively. Of the 14 model predictions, 12 agreed with experimental data in the literature. A comprehensive knockdown of the model nodes suggests that E2F (a key transcription factor driving DNA synthesis) is positively regulated by cyclin D while negatively regulated by GSK3B, SMAD3, and pRB. Conclusion: This model enables us to predict how cardiomyocytes respond to stimuli in the CDK network and identify potential therapeutic regulators that induce cardiomyocyte proliferation.


Author(s):  
Louay S. Yousuf ◽  
Dan B. Marghitu

In this study a cam and follower mechanism is analyzed. There is a clearance between the follower and the guide. The mechanism is analyzed using SolidWorks simulations taking into account the impact and the friction between the roller follower and the guide. Four different follower guide’s clearances have been used in the simulations like 0.5, 1, 1.5, and 2 mm. An experimental set up is developed to capture the general planar motion of the cam and follower. The measures of the cam and the follower positions are obtained through high-resolution optical encoders (markers). The effect of follower guide’s clearance is investigated for different cam rotational speeds such as 100, 200, 300, 400, 500, 600, 700 and 800 R.P.M. Impact with friction is considered in our study to calculate the Lyapunov exponent. The largest Lyapunov exponents for the simulated and experimental data are analyzed and selected.


2018 ◽  
Vol 141 (5) ◽  
Author(s):  
Yeshaswini Emmi ◽  
Andreas Fiolitakis ◽  
Manfred Aigner ◽  
Franklin Genin ◽  
Khawar Syed

A new model approach is presented in this work for including convective wall heat losses in the direct quadrature method of moments (DQMoM) approach, which is used here to solve the transport equation of the one-point, one-time joint thermochemical probability density function (PDF). This is of particular interest in the context of designing industrial combustors, where wall heat losses play a crucial role. In the present work, the novel method is derived for the first time and validated against experimental data for the thermal entrance region of a pipe. The impact of varying model-specific boundary conditions is analyzed. It is then used to simulate the turbulent reacting flow of a confined methane jet flame. The simulations are carried out using the DLR in-house computational fluid dynamics code THETA. It is found that the DQMoM approach presented here agrees well with the experimental data and ratifies the use of the new convective wall heat losses model.


Author(s):  
A. Grimaldi ◽  
V. Michelassi

This paper discusses the impact of inlet flow distortions on centrifugal compressors based upon a large experimental data base in which the performance of several impellers in a range of corrected flows and corrected speeds have been measured after been coupled with different inlet plenums technologies. The analysis extends to centrifugal compressor inlets including a side stream, typical of liquefied natural gas applications. The detailed measurements allow a thorough characterization of the flow field and associated performance. The results suggest that distortions can alter the head by as much as 3% and efficiency of around 1%. A theoretical analysis allowed to identify the design features that are responsible for this deviation. In particular, an extension of the so-called “reduced-frequency,” a coefficient routinely used in axial compressors and turbine aerodynamics to weigh the unsteadiness generated by upstream to downstream blade rows, allowed to determine a plenum-to-impeller reduced frequency that correlates very well with the measured performance. The theory behind the new coefficient is discussed together with the measurement details and validates the correlation that can be used in the design phase to determine the best compromise between the inlet plenum complexity and impact on the first stage.


Author(s):  
Fanny M. Besem ◽  
Robert E. Kielb ◽  
Nicole L. Key

The frequency mistuning that occurs due to manufacturing variations and wear and tear of the blades can have a significant effect on the flutter and forced response behavior of a blade row. Similarly, asymmetries in the aerodynamic or excitation forces can tremendously affect the blade responses. When conducting CFD simulations, all blades are assumed to be tuned (i.e. to have the same natural frequency) and the aerodynamic forces are assumed to be the same on each blade except for a shift in interblade phase angle. The blades are thus predicted to vibrate at the same amplitude. However, when the system is mistuned or when asymmetries are present, some blades can vibrate with a much higher amplitude than the tuned, symmetric system. In this research, we first conduct a deterministic forced response analysis of a mistuned rotor and compare the results to experimental data from a compressor rig. It is shown that tuned CFD results cannot be compared directly with experimental data because of the impact of frequency mistuning on forced response predictions. Moreover, the individual impact of frequency, aerodynamic, and forcing function perturbations on the predictions is assessed, leading to the conclusion that a mistuned system has to be studied probabilistically. Finally, all perturbations are combined and Monte-Carlo simulations are conducted to obtain the range of blade response amplitudes that a designer could expect.


2021 ◽  
Vol 46 (1) ◽  
Author(s):  
C. E. Chigbundu ◽  
K. O. Adebowale

Dyes are complex and sensitive organic chemicals which exposes microbial populations, aquatic lives and other living organisms to its toxic effects if their presence in water bodies or industrial effluents are not properly handled. This work therefore, comparatively studied the adsorption efficiencies of natural raw kaolinite (NRK) clay adsorbent and dimethyl sulphoxide (DMSO) faciley intercalated kaolinite clay (DIK) adsorbent for batch adsorption of Basis Red 2 (BR2) dye. The impact of varying the contact time, temperature and other operating variables on adsorption was also considered. The two adsorbents were characterized using SEM images, FTIR and XRD patterns. Linear and non-linear regression analysis of different isotherm and kinetic models were used to describe the appropriate fits to the experimental data. Error analysis equations were also used to measure the goodness-of-fit. Langmuir isotherm model best described the adsorption as being monolayer on homogenous surfaces while Kinetic studies showed that Elovich model provides the best fit to experimental data. The adsorption capacities of NRK and DIK adsorbents for the uptake of BR2 were 16.30 mg/g and 32.81 mg/g, respectively (linear regression) and 19.30 mg/g and 30.81 mg/g, respectively (non-linear regression). The thermodynamic parameter, ∆G showed that BR2 dye adsorption onto the adsorbents were spontaneous. DIK adsorbent was twice efficient compared with NRK for the uptake of BR2 dye.


Sign in / Sign up

Export Citation Format

Share Document