Design Printable Pressure Sensor Based on 3DP Fabrication

2014 ◽  
Vol 915-916 ◽  
pp. 1135-1139
Author(s):  
Na Li ◽  
Ji Quan Yang ◽  
Hou Yuan Zhou

In this paper, a low cost, printable pressure sensor is presented. The pressure sensor will be used in personal navigation system which was designed based on micro jet fabrication structure. Inkjet printing and line patterning methods have been used to fabricate polymer resistors and field effect transistors on flexible substrates. A prototype sensor was designed, and the models of mechnical structure and ditital fabrication was also given, fabricated and tested with standard experimental measurements. Results verify that the pressure sensitivity can be measured for both requency and minimum power level difference in good perforamance. The dynamic performance of pressure sensor was also tested by inkjet printing on to flexible substrates including paper, with high resolution in just seconds.

2009 ◽  
Vol 1204 ◽  
Author(s):  
Paolo Bondavalli ◽  
Louis Gorintin ◽  
Pierre Legagneux ◽  
Didier Pribat ◽  
Laurent Caillier ◽  
...  

AbstractThe first paper showing the great potentiality of Carbon Nanotubes Field Effect transistors (CNTFETs) for gas sensing applications was published in 2000 [1]. It has been demonstrated that the performances of this kind of sensors are extremely interesting: a sensitivity of around 100ppt (e.g. for NO2 [2]) has been achieved in 2003 and several techniques to improve selectivity have been tested with very promising results [2]. The main issues that have not allowed, up to now, these devices to strike more largely the market of sensors, have been the lack of an industrial method to obtain low-cost devices, a demonstration of their selectivity in relevant environments and finally a deeper study on the effect of humidity and the possible solutions to reduce it. This contribution deals with CNTFETs based sensors fabricated using air-brush technique deposition on large surfaces. Compared to our last contribution [3], we have optimized the air-brush technique in order to obtain high performances transistors (Log(Ion)/Log(Ioff) ∼ 5/6) with highly reproducible characteristics : this is a key point for the industrial exploitation. We have developed a machine which allows us the dynamic deposition on heated substrates of the SWCNT solutions, improving dramatically the uniformity of the SWCNT mats. We have performed tests using different solvents that could be adapted as a function of the substrates (e.g. flexible substrates). Moreover these transistors have been achieved using different metal electrodes (patented approach [4]) in order to improve selectivity. Results of tests using NO2, NH3 with concentrations between ∼ 1ppm and 10ppm will be shown during the meeting.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7465
Author(s):  
Tomas Vincze ◽  
Michal Micjan ◽  
Juraj Nevrela ◽  
Martin Donoval ◽  
Martin Weis

Organic field-effect transistors have been envisioned for advanced photodetectors because the organic semiconductors provide unique absorption characteristics, low-cost fabrication, or compatibility with flexible substrates. However, the response time of organic phototransistors still does not reach the required application level. Here, we report the photoresponse of copper phthalocyanine phototransistor in a steady state and under pulsed illumination. The detailed analysis based on the random walk among a field of traps was used to evaluate the dimensionality of electron transport in a device.


2022 ◽  
Vol 6 (1) ◽  
Author(s):  
Taikyu Kim ◽  
Cheol Hee Choi ◽  
Pilgyu Byeon ◽  
Miso Lee ◽  
Aeran Song ◽  
...  

AbstractAchieving high-performance p-type semiconductors has been considered one of the most challenging tasks for three-dimensional vertically integrated nanoelectronics. Although many candidates have been presented to date, the facile and scalable realization of high-mobility p-channel field-effect transistors (FETs) is still elusive. Here, we report a high-performance p-channel tellurium (Te) FET fabricated through physical vapor deposition at room temperature. A growth route involving Te deposition by sputtering, oxidation and subsequent reduction to an elemental Te film through alumina encapsulation allows the resulting p-channel FET to exhibit a high field-effect mobility of 30.9 cm2 V−1 s−1 and an ION/OFF ratio of 5.8 × 105 with 4-inch wafer-scale integrity on a SiO2/Si substrate. Complementary metal-oxide semiconductor (CMOS) inverters using In-Ga-Zn-O and 4-nm-thick Te channels show a remarkably high gain of ~75.2 and great noise margins at small supply voltage of 3 V. We believe that this low-cost and high-performance Te layer can pave the way for future CMOS technology enabling monolithic three-dimensional integration.


2016 ◽  
Vol 2 (7) ◽  
pp. 1600046 ◽  
Author(s):  
Jimin Kwon ◽  
Yasunori Takeda ◽  
Kenjiro Fukuda ◽  
Kilwon Cho ◽  
Shizuo Tokito ◽  
...  

2002 ◽  
Vol 725 ◽  
Author(s):  
H.E. Katz ◽  
T. Someya ◽  
B. Crone ◽  
X.M. Hong ◽  
M. Mushrush ◽  
...  

Organic field-effect transistors (OFETs) are “soft material” versions of accumulationmode silicon-based FETs, where a gate field across a dielectric induces a conductive charge channel at the interface of the dielectric with a semiconductor, between source and drain electrodes. Charge carrier mobilities >0.01 and on/off ratios >10,000 are routinely obtained, adequate for a few specialized applications such as electrophoretic pixel switches but well below standards established for silicon microprocessor technology. Still, progress that has been made in solution-phase semiconductor deposition and the printing of contacts and dielectrics stimulates the development of OFET circuits for situations where extreme low cost, large area, and mechanical flexibility are important. Circuits with hundreds of OFETs have been demonstrated and a prototype OFETcontrolled black-on-white “electronic ink” sign has been fabricated.


2001 ◽  
Vol 665 ◽  
Author(s):  
A. Ullmann ◽  
J. Ficker ◽  
W. Fix ◽  
H. Rost ◽  
W. Clemens ◽  
...  

ABSTRACTIntegrated plastic circuits (IPCs) will become an integral component of future low cost electronics. For low cost processes IPCs have to be made of all-polymer Transistors. We present our recent results on fabrication of Organic Field-Effect Transistors (OFETs) and integrated inverters. Top-gate transistors were fabricated using polymer semiconductors and insulators. The source-drain structures were defined by standard lithography of Au on a flexible plastic film, and on top of these electrodes, poly(3-alkylthiophene) (P3AT) as semiconductor, and poly(4-hydroxystyrene) (PHS) as insulator were homogeneously deposited by spin-coating. The gate electrodes consist of metal contacts. With this simple set-up, the transistors exhibit excellent electric performance with a high source-drain current at source - drain and gate voltages below 30V. The characteristics show very good saturation behaviour for low biases and are comparable to results published for precursor pentacene. With this setup we obtain a mobility of 0.2cm2/Vs for P3AT. Furthermore, we discuss organic integrated inverters exhibiting logic capability. All devices show shelf-lives of several months without encapsulation.


2020 ◽  
Vol 2 (8) ◽  
pp. 3422-3432 ◽  
Author(s):  
Chun-Kai Chen ◽  
Yan-Cheng Lin ◽  
Satoshi Miyane ◽  
Shinji Ando ◽  
Mitsuru Ueda ◽  
...  

2005 ◽  
Vol 44 (6A) ◽  
pp. 3649-3658 ◽  
Author(s):  
Takeo Kawase ◽  
Soichi Moriya ◽  
Christopher J. Newsome ◽  
Tatsuya Shimoda

Sign in / Sign up

Export Citation Format

Share Document