The Influence of Mineralogical Composition Changes of Sandstone Cement on Physical-Mechanical Properties

2014 ◽  
Vol 923 ◽  
pp. 71-74
Author(s):  
Kateřina Kovářová ◽  
Zdenek Pala

The aim of the contribution is to present the results of research focused on cement mineralogical composition changes and their influence on physical-mechanical properties of sandstones. Three types of Czech sandstones were tested during this experiment Hořice, Kocběře and Božanov. The sandstone samples were treated in the climatic chamber in order to simulate weathering processes that are typical for winter period in Prague. The influence of road salts was also taken into consideration. For the purposes of mineralogical changes determination the sandstone cement was separated and subsequently analyzed using X-Ray diffraction a DTA/TG analysis. The physical-mechanical properties such as e.g. uniaxial compressive strength, water absorption and open porosity were determined before and after the climatic treatment to enable evaluation of the influence of weathering processes.

Author(s):  
F. Mostefa ◽  
Nasr Eddine Bouhamou ◽  
H.A. Mesbah ◽  
Salima Aggoun ◽  
D. Mekhatria

This work aims to study the feasibility of making a geopolymer cement based on dredged sediments, from the Fergoug dam (Algeria) and to evaluate their construction potential particularly interesting in the field of special cementitious materials. These sediments due to their mineralogical composition as aluminosilicates; are materials that can be used after heat treatment. Sedimentary clays were characterized before and after calcination by X-ray diffraction, ATG / ATD, spectroscopy (FTIR) and XRF analysis. The calcination was carried out on the raw material sieved at 80 μm for a temperature of 750 ° C, for 3.4 and 5 hours. The reactivity of the calcined products was measured using isothermal calorimetric analysis (DSC) on pastes prepared by mixing an alkaline solution of sodium hydroxide (NaOH) 8 M in an amount allowing to have a Na / Al ratio close to 1 (1: 1). Also, cubic mortar samples were prepared with a ratio L / S: 0.8, sealed and cured for 24 hours at 60 ° C and then at room temperature until the day they were submited to mechanical testing. to check the extent of geopolymerization. The results obtained allowed to optimize the calcination time of 5 hours for a better reactivity of these sediments, and a concentration of 8M of sodium hydroxide and more suitable to have the best mechanical performances.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1192
Author(s):  
Imen Azzouz ◽  
Joël Faure ◽  
Kaouther Khlifi ◽  
Ahmed Cheikh Larbi ◽  
Hicham Benhayoune

In this paper, 45S5 Bioglass® coatings were elaborated by electrophoretic deposition (EPD) on the titanium alloy Ti6Al4V. An adequate grinding protocol was developed to obtain a stable suspension of submicrometric particles in isopropanol. The voltage and the deposition time of EPD were optimized. An optimal voltage of 30 V and two deposition times (30 and 90 s) were chosen to obtain two different coatings with thicknesses of 21 and 85 µm, respectively. The as-deposited coatings were thermally treated following a two-step protocol: one hour at 120 °C followed by one hour at 450 °C. The surface morphology and the chemical analysis of the 45S5 Bioglass® coatings were assessed, before and after heat treatment, by scanning electron microscopy associated to X-ray microanalysis (SEM-EDXS). Their structural analysis was performed by X-ray diffraction (XRD). A scratch test study was developed for mechanical properties analysis. The obtained results revealed that the obtained coatings were homogeneous, weakly crystallized with an important compactness. An increase in the critical load LC associated with the cohesive limit of the film (from Lc = 3.39 N to Lc = 5.18 N) was observed when the coating thickness was decreased from 85 to 21 µm. After the thermal treatment, the chemical composition of the coatings was not altered, and their mechanical properties were improved.


2014 ◽  
Vol 1611 ◽  
pp. 89-94
Author(s):  
Diana M. Marulanda ◽  
Jair G. Cortés ◽  
Marco A. Pérez ◽  
Gabriel García

ABSTRACTThe aim of this work is to process by equal channel angular pressing (ECAP) a low carbon – triple-alloyed steel containing 0.2% C, 0.5% Cr, 0.6% Ni, 0.2% Mo and 0.8 Mo. The process is performed at room temperature for up to four passes using route Bc with an equivalent strain of ∼0.6 after a single pass. Structure evolution before and after deformation is studied using scanning electron microscopy (SEM) and x-ray diffraction (XRD) and mechanical properties are assessed by microhardness and tensile testing. A significant improvement of the mechanical properties is found with increasing number of ECAP passes. Micro-hardness increases from 216 HV for the initial sample to 302 HV after four passes and tensile strength increases to 1200 MPa compared with 430 MPa prior to ECAP. X-ray diffraction and SEM analysis show changes in the original ferritic-perlitic structure through ferrite grain refinement and the deformation of perlite. This nickel-chromium-molybdenum alloy is used in manufacturing as gear material, and when it is hardened and formed through carburizing or boronizing it can be used to make hard-wearing machine parts. However, the ECAP process has not been used to harden this steel and to change its structure to obtain better mechanical performance.


2009 ◽  
Vol 1242 ◽  
Author(s):  
M. Olvera-Gracia ◽  
T. Kryshtab ◽  
A.M. Paniagua-Mercado ◽  
J. Aguilar-Hernández

ABSTRACTTextile 100 % acrylic fabrics have been used in tapestry for a long time. One of the drawbacks of this type of fabrics is its great flammability. Textile fabrics are coated with flame retardant in order to reduce the flammability. We present some results concerning the use of commercial products (Flame-Out, Borax (Na2B4O5(OH)4•8H2O), and Hexametaphosphate of Sodium (Na16P14O43) as flame retardants for textile 100 % acrylic fabrics. The flame retardant capabilities, mechanical properties and structural characteristics of the textile fabrics before and after the use of these products were investigated throughout the special textile methods for inflammability and mechanical resistibility as well as infra-red spectroscopy, X-ray diffraction and scanning electronic microscopy. After the use of the flame retardants the mechanical properties of the fabrics were improved or at least remained the same as compared to fabrics without any treatment. The use of Borax / Hexametaphosphate from Sodium /Water results in the essential increase of combustion retardation time about 2 minutes as compared with 8 seconds for untreated fabrics.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1190
Author(s):  
Fotini Martsouka ◽  
Konstantinos Papagiannopoulos ◽  
Sophia Hatziantoniou ◽  
Martin Barlog ◽  
Giorgos Lagiopoulos ◽  
...  

Pharmaceutical grade bentonite, containing a high amount of montmorillonite, enriched with zinc (Zn) or copper (Cu) (ZnBent and CuBent, respectively) was used as the main component for the creation of formulations for cutaneous use and tested for their antimicrobial capacity. Bentonite (Bent) with added phenoxyethanol (PH) as a preservative and unmodified bentonite were used as control groups. The mineralogical composition, structural state, and physical or chemical properties, before and after the modification of the samples, were characterized utilizing X-ray Diffraction Analysis (XRD), Fourier-Transform Infrared Spectroscopy (FTIR) and X-ray Fluorescence (XRF) techniques, and Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM, SEM-EDS) analyses. In addition, the profile of zinc and copper concentration from two types of surfaces ZnBent and CuBent, and into Phosphate-Buffered Saline (PBS) are discussed. Finally, the formulations in the form of basic pastes were challenged against bacteria, molds, and yeasts, and their performance was evaluated based on the European Pharmacopeia criteria. The Cu-modified bentonite performed excellently against bacteria and yeasts, while the Zn-modified bentonite only showed great results against yeasts. Therefore, Cu-modified bentonite formulations could offer antimicrobial protection without the use of preservatives.


Author(s):  
T. Gulik-Krzywicki ◽  
M.J. Costello

Freeze-etching electron microscopy is currently one of the best methods for studying molecular organization of biological materials. Its application, however, is still limited by our imprecise knowledge about the perturbations of the original organization which may occur during quenching and fracturing of the samples and during the replication of fractured surfaces. Although it is well known that the preservation of the molecular organization of biological materials is critically dependent on the rate of freezing of the samples, little information is presently available concerning the nature and the extent of freezing-rate dependent perturbations of the original organizations. In order to obtain this information, we have developed a method based on the comparison of x-ray diffraction patterns of samples before and after freezing, prior to fracturing and replication.Our experimental set-up is shown in Fig. 1. The sample to be quenched is placed on its holder which is then mounted on a small metal holder (O) fixed on a glass capillary (p), whose position is controlled by a micromanipulator.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


2011 ◽  
Vol 314-316 ◽  
pp. 273-278
Author(s):  
Yu Hua Dong ◽  
Ke Ren ◽  
Qiong Zhou

Linear low density polyethylene (LLDPE) was chemically modified with grafting maleic anhydride (MAH) monomer on its backbone by melting blending. Nano-particles SiO2 was modified by cationic surfactant hexadecyl trimethyl ammonium bromide (CTAB) and anionic surfactant sulfosalicylic acid (SSA) and added to PE coating respectively. Measurement of membrane potential showed that the coating containing modified SiO2 nano-particles had characteristic of ion selectivity. The properties of the different coatings were investigated according to relative industrial standards. Experimental results indicated that PE coating with ion selectivity had better performances, such as adhesion strength, cathodic disbonding and anti-corrosion, than those of coating without ion selectivity. Crystal structure of the coatings before and after alkali corrosion was characterized by Fourier transform infrared spectra (FTIR) and X-ray diffraction (XRD). Structure of the coating without ion selectivity was damaged by NaOH alkali solution, causing mechanical properties being decreased. And the structure of the ion selective coatings was not affected.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1085
Author(s):  
Patricia Castaño-Rivera ◽  
Isabel Calle-Holguín ◽  
Johanna Castaño ◽  
Gustavo Cabrera-Barjas ◽  
Karen Galvez-Garrido ◽  
...  

Organoclay nanoparticles (Cloisite® C10A, Cloisite® C15) and their combination with carbon black (N330) were studied as fillers in chloroprene/natural/butadiene rubber blends to prepare nanocomposites. The effect of filler type and load on the physical mechanical properties of nanocomposites was determined and correlated with its structure, compatibility and cure properties using Fourier Transformed Infrared (FT-IR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and rheometric analysis. Physical mechanical properties were improved by organoclays at 5–7 phr. Nanocomposites with organoclays exhibited a remarkable increase up to 46% in abrasion resistance. The improvement in properties was attributed to good organoclay dispersion in the rubber matrix and to the compatibility between them and the chloroprene rubber. Carbon black at a 40 phr load was not the optimal concentration to interact with organoclays. The present study confirmed that organoclays can be a reinforcing filler for high performance applications in rubber nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document