An Investigation of Optimum Cutting Conditions in Face Milling Mold Steel Affect the Surface Roughness and Tool Wear

2014 ◽  
Vol 931-932 ◽  
pp. 354-359 ◽  
Author(s):  
Surasit Rawangwong ◽  
Worapong Boonchouytan ◽  
Jaknarin Chatthong ◽  
Romadorn Burapa

The purpose of this research was to investigate the effect of the main factors on the surface roughness in mold steels face milling by carbide tool for results obtained from the analysis used in the manufacture of molds and other parts of the industry. The etching experiment using semi-automated milling machine Obraeci Strojie brand FGV 32 model. Concerning the material was steel grade AISI P20 mold with a hardness between 280-325 HB which used to insert carbide tool. The factors of a speed, feed rate and depth of cut were study. Preliminary experiments showed that the depth does not affect the surface roughness fix depth of cut at 0.5 mm. The experimental revealed that the factor affecting surface roughness was feed rate and speed. The roughness value trenced to reduce at lower feed rate and greater speed. It was possible determine a facing condition by means of the equation Ra = 1.29 - 0.000654Speed + 0.00305Feed rate leading this equation goes to use is in limitation speed 500-1,000 rpm. at feed rate 160-315 mm/min. From the experiment was confirming the result of a comparison between the equation and the percent accuracy with the margin of error. The result from the experiment of mean absolute percentage error (MAPE) of the equation of surface roughness was 3.27% which was less than the margin of error and was acceptable. The pattern of wear was similar to mechanical fatigue cracking. It may be due to the verious tip of the cutting tool or an impact and flank wear as cutting tool materials resistant to wear less.

2012 ◽  
Vol 488-489 ◽  
pp. 847-855
Author(s):  
S. Rawangwong ◽  
J. Chatthong ◽  
J. Rodjananugoon ◽  
W. Boonchouytan ◽  
R. Burapa

The purpose of this research was to investigate the effects of main factors on the surface roughness in face milling process palmyra palm wood and coconut wood by computer numerical controlled milling machine and using shell end mill cutting tools 6 edges. The main factors including speed, feed rate, depth of cut and angle of cut were investigated for the optimum surface roughness. The result of preliminary trial showed that the depth of cut and the angle of the cut had no effect on surface roughness. It was found from the experiment that the factors affecting surface roughness were feed and speed, with tendency for reduction of roughness value at a lower feed rate and greater cutting speed. Therefore, in the facing process for palmyra palm wood it was possible to determine a face milling condition by means of the equation Ra = 0.954 + 20.4 Feed + 0.00126 Speed. This equation was employed at a limited speed of 800-1200 rpm, and the feed rate of 0.03-0.05 mm/tooth. The result from the experiment of the mean absolute percentage error of the equation of surface roughness is 6.10% which is less than the margin of error, and is acceptable. For coconut wood it was found from the experiment that the factor affecting surface roughness was feed rate and cutting speed, with tendency for reduction of roughness value at lower feed rate and greater cutting speed. Therefore, in the face milling coconut wood it was possible determine a facing condition by means of the equation Ra = 4.72 - 0.000864 Speed + 0.00443 Feed. Leading this equation goes to use is in limitation cutting speed 1000-2000 rpm at feed rate 100-300 mm/min. The result from the experiment of mean absolute percentage error of the equation of surface roughness is 4.64% which is less than the margin of error, and is acceptable. As a result, the selection of optimal machining parameters can be greatly benefited to the Coconut wood furniture manufacturing industry in terms of productivity improvement.


Author(s):  
Do Thi Kim Lien ◽  
Nguyen Dinh Man ◽  
Phung Tran Dinh

In this paper, an experimental study on the effect of cutting parameters on surface roughness was conducted when milling X12M steel. The cutting tool used in this study is a face milling cutter. The material that is used to make the insert is the hard alloy T15K6. The cutting parameters covered in this study include the cutting speed, the feed rate and depth of cut. The experiments are performed in the form of a rotating center composite design. The analysis shows that for both Ra and Rz: (1) the feed rate has the greatest influence on the surface roughness while the depth of cut, the cutting speed has a negligible effect on the surface roughness. (2) only the interaction between the feed rate and the depth of the cut has a significant effect on both Ra and Rz while the interaction between the cutting speed and the feed rate, the interaction between the cutting speed and the depth of cut have a negligible effect on surface roughness. A regression equation showing the relationship between Ra, Rz, and cutting parameters has also been built in this study.


2013 ◽  
Vol 747 ◽  
pp. 777-780 ◽  
Author(s):  
S. Rawangwong ◽  
Worapong Boonchouytan ◽  
J. Chatthong ◽  
R. Burapa

The purpose of this research was to investigate the effect of the main factors of the surface roughness in semi-solid 6061 aluminum face milling. This study was conducted by using computer numerical controlled milling machine. The controlled factors were the speed, the feed rate and the depth of cut which the depth of cut was not over 1 mm. For this experiment, we used factorial designs and the result showed that the factors effected of surface roughness was the feed rate and the speed while the depth of cut did not effect with the surface roughness. Furthermore, the surface roughness was likely to reduce when the speed was 4,200 rpm and the feed rates was 1,300 mm/min. The result of the research led to the linear equation measurement value which was Ra = 0.186 - 0.000034 Speed + 0.000047 Feed rate. The equation formula should be used with the speed in the range of 3,200-4,200 rpm, feed rate in the range of 1,300-1,800 mm/min and the depth of cut not over 1 mm. The equation was used to confirm the research results, it was found that the mean absolute percentage error of the surface roughness obtained from the predictive comparing to the value of the experiment was 4.12%, which was less than the specified error and it was acceptable.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 9 ◽  
Author(s):  
Andrzej Matras

The paper studies the potential to improve the surface roughness in parts manufactured in the Selective Laser Melting (SLM) process by using additional milling. The studied process was machining of samples made of the AlSi10Mg alloy powder. The simultaneous impacts of the laser scanning speed of the SLM process and the machining parameters of the milling process (such as the feed rate and milling width) on the surface roughness were analyzed. A mathematical model was created as a basis for optimizing the parameters of the studied processes and for selecting the sets of optimum solutions. As a result of the research, surface with low roughness (Ra = 0.14 μm, Rz = 1.1 μm) was obtained after the face milling. The performed milling allowed to reduce more than 20-fold the roughness of the SLM sample surfaces. The feed rate and the cutting width increase resulted in the surface roughness deterioration. Some milled surfaces were damaged by the chip adjoining to the rake face of the cutting tool back tooth.


2020 ◽  
Vol 17 (2) ◽  
pp. 961-966
Author(s):  
Allina Abdullah ◽  
Afiqah Azman ◽  
B. M. Khirulrizwan

This research outlines an experimental study to determine the optimum parameter of cutting tool for the best surface roughness (Ra) of Aluminum Alloy (AA) 6063. For the experiment in this research, cutting parameters such as cutting speed, depth of cut and feed rate are used to identify the effect of both cutting tools which are tungsten carbide and cermet towards the surface roughness (Ra) of material AA6063. The machining operation involved to cut the material is turning process by using Computer Numerical Control (CNC) Lathe machine. The experimental design was designed by Full Factorial. The experiment that had been conducted by the researcher is 33 with 2 replications. The total number of the experiments that had been run is 54 runs for each cutting tool. Thus, the total number of experiments for both cutting tools is 108 runs. ANOVA analysis had been analyzed to identify the significant factor that affect the Ra result. The significant factors that affect the Ra result of AA6063 are feed rate and cutting speed. The researcher used main effect plot to determine the factor that most influenced the surface roughness of AA6063, the optimum condition of surface roughness and the optimum parameter of cutting tool. The factor that most influenced the surface roughness of AA6063 is feed rate. The optimum condition of surface roughness is at the feed rate of 0.05 mm/rev, cutting speed of 600 rpm and depth of cut of 0.10 mm. While the optimum parameter of cutting tool is cermet insert with the lowest value of surface roughness (Ra) result which is 0.650 μm.


2013 ◽  
Vol 773-774 ◽  
pp. 339-347 ◽  
Author(s):  
Muhammad Yusuf ◽  
M.K.A. Ariffin ◽  
N. Ismail ◽  
S. Sulaiman

With increasing quantities of applications of Metal Matrix Composites (MMCs), the machinablity of these materials has become important for investigation. This paper presents an investigation of surface roughness and tool wear in dry machining of aluminium LM6-TiC composite using uncoated carbide tool. The experiments carried out consisted of different cutting models based on combination of cutting speed, feed rate and depth of cut as the parameters of cutting process. The cutting models designed based on the Design of Experiment Response Surface Methodology. The objective of this research is finding the optimum cutting parameters based on workpiece surface roughness and cutting tool wear. The results indicated that the optimum workpiece surface roughness was found at high cutting speed of 250 m min-1 with various feed rate within range of 0.05 to 0.2 mm rev-1, and depth of cut within range of 0.5 to 1.5 mm. Turning operation at high cutting speed of 250 m min-1 produced faster tool wear as compared to low cutting speed of 175 m min-1 and 100 m min-1. The wear minimum (VB = 42 μm ) was found at cutting speed of 100 m min-1, feet rate of 0.2 mm rev-1, and depth of cut of 1.0 mm until the length of cut reached 4050 mm. Based on the results of the workpiece surface roughness and the tool flank wear, recommended that turning of LM6 aluminium with 2 wt % TiC composite using uncoated carbide tool should be carried out at cutting speed higher than 175 m min-1 but at feed rate of less than 0.05 mm rev-1 and depth of cut less than 1.0 mm.


Author(s):  
Nhu-Tung Nguyen ◽  
Dung Hoang Tien ◽  
Nguyen Tien Tung ◽  
Nguyen Duc Luan

In this study, the influence of cutting parameters and machining time on the tool wear and surface roughness was investigated in high-speed milling process of Al6061 using face carbide inserts. Taguchi experimental matrix (L9) was chosen to design and conduct the experimental research with three input parameters (feed rate, cutting speed, and axial depth of cut). Tool wear (VB) and surface roughness (Ra) after different machining strokes (after 10, 30, and 50 machining strokes) were selected as the output parameters. In almost cases of high-speed face milling process, the most significant factor that influenced on the tool wear was cutting speed (84.94 % after 10 machining strokes, 52.13 % after 30 machining strokes, and 68.58 % after 50 machining strokes), and the most significant factors that influenced on the surface roughness were depth of cut and feed rate (70.54 % after 10 machining strokes, 43.28 % after 30 machining strokes, and 30.97 % after 50 machining strokes for depth of cut. And 22.01 % after 10 machining strokes, 44.39 % after 30 machining strokes, and 66.58 % after 50 machining strokes for feed rate). Linear regression was the most suitable regression of VB and Ra with the determination coefficients (R2) from 88.00 % to 91.99 % for VB, and from 90.24 % to 96.84 % for Ra. These regression models were successfully verified by comparison between predicted and measured results of VB and Ra. Besides, the relationship of VB, Ra, and different machining strokes was also investigated and evaluated. Tool wear, surface roughness models, and their relationship that were found in this study can be used to improve the surface quality and reduce the tool wear in the high-speed face milling of aluminum alloy Al6061


This study uses Taguchi methodology and Gray Relational Analysis approach to explore the optimization of face milling process parameters for Al 6061 T6 alloy.Surface Roughness (Ra), Material Removal Rate (MRR) has been identified as the objective of performance and productivity.The tests were performed by selecting cutting speed (mm / min), feed rate (mm / rev) and cutting depth (mm) at three settings on the basis of Taguchi's L9 orthogonal series.The grey relational approach was being used to establish a multiobjective relationship between both the parameters of machining and the characteristics of results. To find the optimum values of parameters in the milling operation, the response list and plots are used and found to be Vc2-f1-d3. To order to justify the optimum results, the confirmation tests are performed.The machining process parameters for milling were thus optimized in this research to achieve the combined goals such as low surface roughness and high material removal rate on Aluminum 6061 t6.It was concluded that depth of cut is the most influencing parameter followed by feed rate and cutting velocity.


2021 ◽  
Author(s):  
Raqibah Najwa Mudzaffar ◽  
Mohamad Faiz Izzat Bahauddin ◽  
Hanisah Manshor ◽  
Ahmad Zahirani Ahmad Azhar ◽  
Nik Akmar Rejab ◽  
...  

Abstract The zirconia toughened alumina enhanced with titania and chromia (ZTA-TiO2-Cr2O3) ceramic cutting tool is a new cutting tool that possesses good hardness and fracture toughness. However, the performance of the ZTA-TiO2-Cr2O3 cutting tool continues to remain unknown and therefore requires further study. In this research, the wearing of the ZTA-TiO2-Cr2O3 cutting tool and the surface roughness of the machined surface of stainless steel 316L was investigated. The experiments were conducted where the cutting speeds range between 314 to 455 m/min, a feed rate from 0.1 to 0.15 mm/rev, and a depth of cut of 0.2 mm. A CNC lathe machine was utilised to conduct the turning operation for the experiment. Additionally, analysis of the flank wear and crater wear was undertaken using an optical microscope, while the chipping area was observed via scanning electron microscopy (SEM). The surface roughness of the machined surface was measured via portable surface roughness. The lowest value of flank wear, crater wear and surface roughness obtained are 0.044 mm, 0.45 mm2, and 0.50 µm, respectively at the highest cutting speed of 455 m/min and the highest feed rate of 0.15 mm/rev. The chipping area became smaller with the increase of feed rate from 0.10 to 0.15 mm/rev and larger when the feed rate decrease. This was due to the reduced vibrations at the higher spindle speed resulting in a more stable cutting operation, thereby reducing the value of tool wear, surface roughness, and the chipping area.


2010 ◽  
Vol 139-141 ◽  
pp. 782-787
Author(s):  
Yue Ding ◽  
Wei Liu ◽  
Xi Bin Wang ◽  
Li Jing Xie ◽  
Jun Han

In this study, surface roughness generated by face milling of 38CrSi high-strength steel is discussed. Experiments based on 24 factorial design and Box-Behnken design method are conducted to investigate the effects of milling parameters (cutting speed, axial depth of cut and radial depth of cut and feed rate) on surface roughness, and a second-order model of surface roughness is established by using surface response methodology (RSM); Significance tests of the model are carried out by the analysis of variance (ANOVA). The results show that the most important cutting parameter is feed rate, followed by radial depth of cut, cutting speed and axial depth of cut. Moreover, it is verified that the predictive model possesses highly significance by the variance examination at a level of confidence of 99%. And the relationship between surface roughness and the important interaction terms is nonlinear.


Sign in / Sign up

Export Citation Format

Share Document