Preparation of Polyamide 5,6 (PA56) Fibers and its Mechanical Properties

2014 ◽  
Vol 937 ◽  
pp. 86-91 ◽  
Author(s):  
Yassir A. Eltahir ◽  
Haroon A.M. Saeed ◽  
Yu Min Xia ◽  
Yi Min Wang

Polyamide 5,6 (PA56) fibers were successfully prepared by melt-spinning technique. PA56 fibers were subjected to hot drawing process at different draw ratio and temperature. The effect of the drawing conditions on their mechanical properties such as tenacity, tensile modulus and breaking elongation were investigated by means of tensile test measurements. The results revealed that the tenacity and tensile modulus were found to be increased, while the elongation at break decreased with the draw ratio. The improvements of the mechanical properties could be attributed to the enhanced of the molecular orientation along the fiber axis and an increase in crystallinity. On the other hand, the PA56 fibers mechanical properties do not show significant difference with the drawing temperatures.

2012 ◽  
Vol 602-604 ◽  
pp. 1946-1950 ◽  
Author(s):  
Xin Min Hao ◽  
Yuan Yang ◽  
Bin Xiang Huang ◽  
Lei Huang ◽  
Guo Jun Zhang

From PTFE baseband prepared by three-dimensional drawing, after the processing of different temperature and time. And then by twisting, hot drawing and heat setting, the PTFE filament was prepared in appropriate tension conditions. The surface morphology of the resulting filaments was observed by SEM, the result shows that the uniformity of the PTFE membrane has been improved by using three-dimensional drawing process, hot drawing processes had a great effect upon the breaking strength and elongation at break of PTFE fibers. In order to keep ensure reasonable mechanical properties, the draw ratio in the range of 20 to 50 times to adjust the temperature controlled at 150°C to 300 °C.


2021 ◽  
Vol 1199 (1) ◽  
pp. 012029
Author(s):  
V Krmelová ◽  
M Gavendová ◽  
J Krmela ◽  
P Skalková ◽  
E Loksik

Abstract The main objective of this work was to investigate the effect of different cellulose (CEL) content and the draw ratio on the thermal and mechanical properties of drawn polypropylene (PP) fibres. The modification of PP fibres during their production can helps to prepare PP fibres with improved properties, guarantees new opportunities for the expansion of an assortment of PP fibres in the clothing and domestic textile industries. The modified PP/CEL fibres were prepared from PP pellets and PP/cellulose masterbatch via the melt spinning technique at 260 °C followed by drawing for various draw ratios in the company Chemosvit, Fibrochem a. s. (Svit, Slovakia). Differential scanning calorimetry (DSC) was used to evaluate the thermal properties of PP fibres. The mechanical properties (tenacity and elongation at break and modulus of elasticity) and low cycle loading of modified PP fibres were also studied. The obtained experimental results of drawn PP/CEL fibres were compared with neat PP fibre prepared under the same technological conditions. Cellulose had a minimal effect on the melting temperatures of fibres and increased of the PP crystallization temperatures in comparison with the neat drawn PP fibre. The limited decrease of mechanical properties of prepared fibres were observed, but the decreases do not influence on the fibres commercial use.


Author(s):  
Ivanna Baturynska

Additive manufacturing (AM) is an attractive technology for manufacturing industry due to flexibility in design and functionality, but inconsistency in quality is one of the major limitations that does not allow utilizing this technology for production of end-use parts. Prediction of mechanical properties can be one of the possible ways to improve the repeatability of the results. The part placement, part orientation, and STL model properties (number of mesh triangles, surface, and volume) are used to predict tensile modulus, nominal stress and elongation at break for polyamide 2200 (also known as PA12). EOS P395 polymer powder bed fusion system was used to fabricate 217 specimens in two identical builds (434 specimens in total). Prediction is performed for XYZ, XZY, ZYX, and Angle orientations separately, and all orientations together. The different non-linear models based on machine learning methods have higher prediction accuracy compared with linear regression models. Linear regression models have prediction accuracy higher than 80% only for Tensile Modulus and Elongation at break in Angle orientation. Since orientation-based modeling has low prediction accuracy due to a small number of data points and lack of information about material properties, these models need to be improved in the future based on additional experimental work.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3419 ◽  
Author(s):  
Beata Kaczmarek ◽  
Katarzyna Lewandowska ◽  
Alina Sionkowska

Collagen materials are widely used in biomedicine and in cosmetics. However, their properties require improvement for several reasons. In this work, collagen solution as well as collagen films were modified by the addition of ferulic acid (FA). Thin collagen films containing FA were obtained by solvent evaporation. The properties of collagen solution have been studied by steady shear tests. The structure and surface properties of collagen thin films were studied. It was found that for collagen solution with 5% addition of FA, the apparent viscosity was the highest, whereas the collagen solutions with other additions of FA (1%, 2%, and 10%), no significant difference in the apparent viscosity was observed. Thin films prepared from collagen with 1 and 2% FA addition were homogeneous, whereas films with 5% and 10% FA showed irregularity in the surface properties. Mechanical properties, such as maximum tensile strength and elongation at break, were significantly higher for films with 10% FA than for films with smaller amount of FA. Young modulus was similar for films with 1% and 10% FA addition, but bigger than for 2% and 5% of FA in collagen films. The cross-linking of collagen with ferulic acid meant that prepared thin films were elastic with better mechanical properties than collagen films.


2019 ◽  
Vol 131 ◽  
pp. 01127
Author(s):  
Wen Wen Yu ◽  
Jian Gao Shi ◽  
Yong Li Liu ◽  
Lei Wang

Ultra-high molecular weight polyethylene (UHMWPE) and graphene (GR) was melt compounded by reactive extrusion. Nanocomposite monofilaments were prepared by melt spinning through a co-rotating screw extruder and drawing at hot water. GR/UHMWPE nanocomposite ropes were twisted using nanocomposite monofilaments. A structure and mechanical properties of the GR/UHMWPE nanocomposite monofilaments and its ropes had been characterized by scanning electron microscopy (SEM), and mechanical test. Results showed that the monofilaments surface of monofilaments became rougher with introducing of GR nanosheets, which could be related to stacking of GR. The breaking load of GR/UHMWPE nanocomposite ropes was remarkably improved upon nanofiller addition, with the decrease of the elongation at break.


2019 ◽  
Vol 9 (6) ◽  
pp. 1060
Author(s):  
Ivanna Baturynska

Additive manufacturing (AM) is an attractive technology for the manufacturing industry due to flexibility in its design and functionality, but inconsistency in quality is one of the major limitations preventing utilizing this technology for the production of end-use parts. The prediction of mechanical properties can be one of the possible ways to improve the repeatability of results. The part placement, part orientation, and STL model properties (number of mesh triangles, surface, and volume) are used to predict tensile modulus, nominal stress, and elongation at break for polyamide 2200 (also known as PA12). An EOS P395 polymer powder bed fusion system was used to fabricate 217 specimens in two identical builds (434 specimens in total). Prediction is performed for XYZ, XZY, ZYX, and Angle orientations separately, and all orientations together. The different non-linear models based on machine learning methods have higher prediction accuracy compared with linear regression models. Linear regression models only have prediction accuracy higher than 80% for Tensile Modulus and Elongation at break in Angle orientation. Since orientation-based modeling has low prediction accuracy due to a small number of data points and lack of information about the material properties, these models need to be improved in the future based on additional experimental work.


2021 ◽  
pp. 002199832110476
Author(s):  
William Urrego Yepes ◽  
Natalia Cardona ◽  
Sandra M Velasquez ◽  
Diego H Giraldo Vásquez ◽  
Juan C Posada

In this work, the effect of particle size and the content of leather wastes on the processability, vulcanization, and mechanical properties of a natural rubber/leather wastes composites was studied. From a reduction process, leather waste was later sieved to classify particles smaller than 0.6 mm and particles between 0.84 and 2 mm, hereafter called fine and coarse residues, respectively. The morphology of the wastes was analyzed from scanning electron microscopy micrographs. Natural rubber/leather wastes composites with 20, 40, 60, 80, and 100 phr (parts per 100 parts of rubber) of treated leather wastes were obtained in a torque rheometer. Mixtures with coarse wastes exhibited a slightly higher torque than mixtures with the fine wastes; additionally, increasing the wastes content yields in an increased torque during the final stage of the process. The addition of leather wastes increased the vulcanization time and stiffness of the composites; additionally, materials with fine wastes showed lower vulcanization times compared to materials with coarse wastes. Composites with fine leather wastes exhibited higher density and tensile modulus than materials with coarse wastes; however, only the composites with 80 and 100 phr of wastes showed a statistically significant difference in hardness values. The specific energy consumption (SEC) was calculated from the results obtained with the torque rheometer; it was found that for all the formulations the SEC decreased as the phr of leather residues increased. It was found that it is possible to use leather wastes in natural rubber composites, to obtain adequate materials feasible for some applications.


1990 ◽  
Vol 203 ◽  
Author(s):  
Taishih Maw ◽  
Richard E. Hopla

ABSTRACTMechanical properties (tensile modulus, tensile strength, elongation at break), thermal properties (T8' CTE, thermo-decomposition temperature, and rate of weight loss) and electrical properties of Problmlde 414 cured films have been determined. The mechanical properties of Probimide 414 thin films are highly dependent on the hard-bake temperature, hard-bake time, and purge gas, but not dependent on the level of the exposure energy or the presence of 1% Irganox 1010 (w/w) as a stabilizer. At a hard-bake temperature of 350ºC and a nitrogen purge rate of 15 SCFH, Probimide 414 films showed excellent retention of the mechanical properties during extended heat treatment.


2013 ◽  
Vol 834-836 ◽  
pp. 847-854
Author(s):  
Le Lun Jiang ◽  
Yong Huang ◽  
Jin Tian Ling ◽  
Zhang Qi Feng ◽  
Xi Feng Qiao ◽  
...  

PLGA (polylactic-co-glycolic acid) is an ideal material for biodegradable medical suture. PLGA fibers and fiber membrane was prepared by using electrostatic spinning, the surface morphology of PLGA fibers and fiber membranes was observed by SEM, and mechanical properties of PLGA fibers and fiber membranes were tested by self-developed micro-force loading system. Experimental results were found that the arrangement of PLGA fibers due to surface tension and friction between fibers was the main factor on mechanical properties of PLGA fibers. The tensile strength of two fibers in winding arrangement was 1.81 times of fibers arranged in parallel at a given number. The tensile strength of three fibers in winding arrangement was 1.25 times of fibers arranged in parallel at a given number. For 80.6 % porosity and 1.028-5.764 mm width PLGA fiber membranes, tensile strength was 1.06-1.47 MPa, tensile modulus was 9.14-13.6 MPa, and elongation at break was 10.8 % to 11.6 %. The tension of fiber membranes increased with its width.


BioResources ◽  
2010 ◽  
Vol 5 (3) ◽  
pp. 1618-1625
Author(s):  
M. Alamgir Kabir ◽  
M. Monimul Huque ◽  
M. Rabiul Islam ◽  
Andrzej K. Bledzki

Raw jute fiber was treated with o-hydroxybenzenediazonium salt (o-HBDS) in alkaline media. Raw and modified jute fiber were used to prepare composites by mixing with polypropylene (PP) plastic in different weight fractions (20, 25, 30, and 35%) of jute fiber. The mechanical properties except elongation at break of o-HBDS-treated (in alkaline medium) jute fiber-PP composite were higher than those of PP alone, raw jute fiber-PP composites, and alkali-treated jute fiber-PP composites. The elongation at break of treated jute-PP composite decreased to a large extent as compared to that of PP. The increase of tensile strength, tensile modulus, flexural strength, flexural modulus, and Charpy impact strength were found to be exceptionally high (in some cases ~200%) as compared to those of literature values.


Sign in / Sign up

Export Citation Format

Share Document