Study on Superabsorbent Material in Thermal Infrared Camouflage

2014 ◽  
Vol 941-944 ◽  
pp. 370-373
Author(s):  
Nai Yan Zhang ◽  
Jiang Yu ◽  
Juan Zhang

Objectives, which is motional on the batter field, such as vehicles, tanks, planes, warships, firing cannons, etc. They are all active objects. On the surface of these objects there have very higher temperatures than around background, they have special pictures, and are easy found by thermal infrared reconnaissance systems. In this study, itaconic acid (IA) was co-polymerized with N, N-diethylacrylamide (DEA) monomer to improve the swelling behavior and the total absorbing water. These copolymer materials were prepared by changing the initial DEA/IA molar ratio and total monomer concentration. The chemical structure of materials was characterized by fourier transform infrared (FTIR) spectroscopy. In comparison with the PDEA hydrogel, the equilibrium swelling ratio (ESR) of the materials increase with the increase of IA content in the feed and the swelling dynamics behaviors of the different composition ratios of the P(DEA-co-IA) materials on the different temperatures was investigated in detail. Using the big hot-inertia of water, the superabsorbent material of the object surface is propitious to debase the object temperature, which suggests that these materials have potential application as thermal infrared camouflage materials.

2012 ◽  
Vol 490-495 ◽  
pp. 3382-3386
Author(s):  
Xiao Qi Li ◽  
Nai Yan Zhang ◽  
Jun Hai Zhang

Poly(N,N-diethylacrylamide) (PDEA) hydrogel is known for their intelligent reversible swelling/deswelling behavior in response to temperature changes across a lower critical solution temperature (LCST) at around 31oC. In this study, itaconic acid (IA) was co-polymerized with N, N-diethylacrylamide (DEA) monomer to improve the swelling behavior and the total absorbing water. These copolymer hydrogels were prepared by changing the initial DEA/IA molar ratio and total monomer concentration. The chemical structure of hydrogels was characterized by fourier transform infrared (FTIR) spectroscopy. In comparison with the PDEA hydrogel, the equilibrium swelling ratio (ESR) of the hydrogels increase with the increase of IA content in the feed and the swelling dynamics behaviors of the different composition ratios of the P(DEA-co-IA) hydrogels on the different temperatures was investigated in detail.


2012 ◽  
Vol 490-495 ◽  
pp. 3667-3671 ◽  
Author(s):  
Nai Yan Zhang ◽  
Yue Guo Shen ◽  
Xiao Qi Li

Poly(N,N-diethylacrylamide) (PDEA) hydrogels possess a lower critical solution temperature (LCST) at around 31oC. When the external temperature is raised above the LCST, the hydrogels experience abrupt and drastic shrinkage. This unique property makes them very useful for biomedical applications such as on-off switches for modulated drug delivery and tissue engineering. In this study, itaconic acid (IA) was co-polymerized with N, N-diethylacrylamide (DEA) monomer to improve the LCST to the physiologic temperature about 37oC. These copolymer hydrogels were prepared by changing the initial DEA/IA molar ratio and total monomer concentration. The interior morphologies of hydrogels were characterized by scanning electron microscopy (SEM). In comparison with the PDEA hydrogel, the equilibrium swelling ratio (ESR) and LCST of the hydrogels increase with the increase of IA content in the feed. The deswelling dynamics behaviors of the different composition ratios of the P(DEA-co-IA) hydrogels on the different temperatures was investigated in detail.


2011 ◽  
Vol 117-119 ◽  
pp. 1239-1242
Author(s):  
Xiao Qi Li ◽  
Nei Yan Zhang ◽  
Yue Guo Shen

In this study, poly(N,N-diethylacrylamide-co-itaconic acid) (P(DEA-co-IA)) copolymer hydrogels were synthesized by changing the initial DEA/IA molar ratio, N,N-methylenebisacrylamide and total monomer concentration. The thermo-sensitive and mechanical performances were optimized by altering the above parameters. In comparison with the PDEA hydrogel, the equilibrium swelling ratio (ESR) and lower critical solution temperature (LCST) of the hydrogels changed with the alternation of the above parameters. The swelling and deswelling kinetics was also studied in dital. The release behaviors of the model drug, aminophylline, are found dependent on hydrogel composition and environmental temperature, which suggests that these materials have potential application as intelligent drug carriers.


2006 ◽  
Vol 6 (9) ◽  
pp. 2804-2810 ◽  
Author(s):  
Nalan Özdemir ◽  
Ali Tuncel ◽  
Myungchan Kang ◽  
Emir Baki Denkbş

In this study, a new thermosensitive material was proposed as a carrier for gene delivery. The thermosensitive submicron particles were synthesized by the dispersion copolymerization of N-isopropylacylamide (NIPA) with a relatively new, cationic comonomer, N-3-dimethylamino-propylmethacrylamide (DMAPM) with higher ionization ability with respect to the commonly used cationic comonomers. To achieve particle sizes smaller than 1 μm, suitable for gene delivery, the total monomer concentration in the dispersion copolymerization was kept at a sufficiently low level. The size of poly(NIPA-co-DMAPM) particles was determined as 454 nm, by AFM in dry state. The poly(NIPA-co-DMAPM) particles showed both temperature and pH sensitivity in the aqueous media. The plasmid DNA adsorption onto the thermosensitive cationic particles was investigated at different temperatures and pHs. The adsorbed amount of plasmid DNA onto the particles was significantly increased by the introduction of cationic comonomer. The equilibrium plasmid DNA adsorptions up to 13 mg/g dry particles were achieved at physiological pH. Approximately 36% w/w of adsorbed plasmid could be desorbed from the cationic nanolatex. The results of biocompatibility studies performed with mouse fibroblast cells showed the suitability of thermosensitive cationic particles for intended application.


2015 ◽  
Vol 1120-1121 ◽  
pp. 615-619
Author(s):  
Hui Yu Jiang ◽  
Mei Hua Zhou ◽  
Ding Pan

Acrylonitrile (AN) and itaconic acid (IA) were used to synthesize UHMWPAN by aqueous suspension method with 2,2’-azobisisobutyronitrile (AIBN) as the initiator and polyvinylalcohol (PVA) as the disperser at different temperatures (55°C~75°C) for different timings (1.0h~3.0h). The usage amounts of AN, IA, AIBN and PVA were also technical polymerization parameters used to obtain the optimal polymerization process. We found that the conversion and the viscosity average molecular weight both achieved the optimum levels when the conditions were as follows: the total monomer concentration (21wt%), the monomer ratio (AN: IA=98:2), the usage amount of the initiator (AIBN, 0.01wt%), the usage amount of the disperser (PVA, 0.1wt%), the polymerization temperature (70°C) and the polymerization time (2h).


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 353 ◽  
Author(s):  
Pengfei Liu ◽  
Charles M. Pearce ◽  
Rozalia-Maria Anastasiadi ◽  
Marina Resmini ◽  
Ana M. Castilla

Covalently crosslinked nanogels are widely explored as drug delivery systems and sensors. Radical polymerization provides a simple, inexpensive, and broadly applicable approach for their preparation, although the random nature of the reaction requires careful study of the final chemical composition. We demonstrate how the different reactivities of the monomers influence the total degree of incorporation into the polymer matrix and the role played by the experimental parameters in maximizing polymerization efficiency. Nanogels based on N-isopropylacrylamide, N-n-propylacrylamide, and acrylamide crosslinked with N,N’-methylenebisacrylamide were included in this study, in combination with functional monomers N-acryloyl-l-proline, 2-acrylamido-2-methyl-1-propanesulfonic acid, and 4-vinyl-1H-imidazole. Total monomer concentration and initiator quantities are determining parameters for maximizing monomer conversions and chemical yields. The results show that the introduction of functional monomers, changes in the chemical structure of the polymerizable unit, and the addition of templating molecules can all have an effect on the polymerization kinetics. This can significantly impact the final composition of the matrices and their chemical structure, which in turn influence the morphology and properties of the nanogels.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1732
Author(s):  
Yuanyuan Yu ◽  
Yongjun Sun ◽  
Jun Zhou ◽  
Aowen Chen ◽  
Kinjal J. Shah

In this study, a high-efficiency magnetic heavy metal flocculant MF@AA was prepared based on carboxymethyl chitosan and magnetic Fe3O4. It was characterized by SEM, FTIR, XPS, XRD and VSM, and the Cu(II) removal rate was used as the evaluation basis for the preparation process. The effects of AMPS content, total monomer concentration, photoinitiator concentration and reaction time on the performance of MF@AA flocculation to remove Cu(II) were studied. The characterization results show that MF@AA has been successfully prepared and exhibits good magnetic induction characteristics. The synthesis results show that under the conditions of 10% AMPS content, 35% total monomer concentration, 0.04% photoinitiator concentration, and 1.5 h reaction time, the best yield of MF@AA is 77.69%. The best removal rate is 87.65%. In addition, the response surface optimization of the synthesis process of MF@AA was performed. The optimal synthesis ratio was finally determined as iron content 6.5%, CMFS: 29.5%, AM: 53.9%, AMPS: 10.1%. High-efficiency magnetic heavy metal flocculant MF@AA shows excellent flocculation performance in removing Cu(II). This research provides guidance and ideas for the development of efficient and low-cost flocculation technology to remove Cu(II) in wastewater.


2021 ◽  
Vol 22 (14) ◽  
pp. 7438
Author(s):  
Paulina Kasprzyk ◽  
Ewa Głowińska ◽  
Paulina Parcheta-Szwindowska ◽  
Kamila Rohde ◽  
Janusz Datta

This study concerns green thermoplastic polyurethanes (TPU) obtained by controlling the chemical structure of flexible segments. Two types of bio-based polyether polyols—poly(trimethylene glycol)s—with average molecular weights ca. 1000 and 2700 Da were used (PO3G1000 and PO3G2700, respectively). TPUs were prepared via a two-step method. Hard segments consisted of 4,4′-diphenylmethane diisocyanates and the bio-based 1,4-butanodiol (used as a chain extender and used to control the [NCO]/[OH] molar ratio). The impacts of the structure of flexible segments, the amount of each type of prepolymer, and the [NCO]/[OH] molar ratio on the chemical structure and selected properties of the TPUs were verified. By regulating the number of flexible segments of a given type, different selected properties of TPU materials were obtained. Thermal analysis confirmed the high thermal stability of the prepared materials and revealed that TPUs based on a higher amount of prepolymer synthesized from PO3G2700 have a tendency for cold crystallization. An increase in the amount of PO3G1000 at the flexible segments caused an increase in the tensile strength and decrease in the elongation at break. Melt flow index results demonstrated that the increase in the amount of prepolymer based on PO3G1000 resulted in TPUs favorable in terms of machining.


2021 ◽  
Vol 22 (13) ◽  
pp. 6708
Author(s):  
Gonzalo Miyagusuku-Cruzado ◽  
Danielle M. Voss ◽  
M. Monica Giusti

Pyranoanthocyanins are anthocyanin-derived pigments with higher stability to pH and storage. However, their slow formation and scarcity in nature hinder their industrial application. Pyranoanthocyanin formation can be accelerated by selecting anthocyanin substitutions, cofactor concentrations, and temperature. Limited information is available on the impacts of the chemical structure of the cofactor and anthocyanin; therefore, we evaluated their impacts on pyranoanthocyanin formation efficiency under conditions reported as favorable for the reaction. Different cofactors were evaluated including pyruvic acid, acetone, and hydroxycinnamic acids (p-coumaric, caffeic, ferulic, and sinapic acid) by incubating them with anthocyanins in a molar ratio of 1:30 (anthocyanin:cofactor), pH 3.1, and 45 °C. The impact of the anthocyanin aglycone was evaluated by incubating delphinidin, cyanidin, petunidin, or malvidin derivatives with the most efficient cofactor (caffeic acid) under identical conditions. Pigments were identified using UHPLC-PDA and tandem mass spectrometry, and pyranoanthocyanin formation was monitored for up to 72 h. Pyranoanthocyanin yields were the highest with caffeic acid (~17% at 72 h, p < 0.05). When comparing anthocyanins, malvidin-3-O-glycosides yielded twice as many pyranoanthocyanins after 24 h (~20%, p < 0.01) as cyanidin-3-O-glycosides. Petunidin- and delphinidin-3-O-glycosides yielded <2% pyranoanthocyanins. This study demonstrated the importance of anthocyanin and cofactor selection in pyranoanthocyanin production.


2011 ◽  
Vol 361-363 ◽  
pp. 487-492
Author(s):  
Sheng Lai Guo ◽  
Yu Huan Bu

The fluid loss control additive plays a key role in reducing reservoir damage and improving the cementing quality of an oil well. Aiming at good fluid loss control ability and excellent dispersibility, a new dispersive type fluid loss control additive was synthesized through orthogonal experiment with 2-acrylamido-2- methyl propane sulfonic acid, acrylamide, N, N-dimethylacrylamide and maleic anhydride. The orthogonal experiment result shows that the influence on the properties of FLCA decreases in the order: PH value > monomer concentration > monomer mole ratio > initiator concentration > temperature. The result indicates that the optimal conditions for FLCA were 4/2.5/2.5/1 of mole ratio of AMPS/AM /NNDMA/MA, 32.5% total monomer concentration in deionized water, 1.0% (by weight of monomer) ammonium persulfate/sodium bisulfite, 4 of PH value, 40°Cof temperature. The synthesized copolymer was identified by FTIR analysis. The results show the dispersive type fluid loss control additive has excellent dispersibility, fluid loss control ability, thermal resistant and salt tolerant ability. As the temperature increases, the thickening time of the slurry containing the synthesized additive reduces. The copolymer is expected to be a good fluid loss control additive.


Sign in / Sign up

Export Citation Format

Share Document