Study of Anchor Bolt Support in Deep Hard Roof of Roadway of Tangshan Mine

2014 ◽  
Vol 945-949 ◽  
pp. 1163-1168 ◽  
Author(s):  
Rui Xi Zhang ◽  
Yu Kai Lv ◽  
Cong Jiang

Traditional trellis support was mainly used in deep mining roadway of Kailuan group. With the increase of mining depth, section of roadway and deformation of surrounding rock also increased gradually. As a passive support ways of roadway, trellis support had been unable to meet the requirements of high yield and high efficiency comprehensive mechanized mining. Therefore, anchor bolt supportis in urgent need to turn passive support into active support and to ensure the safety and the stability of surrounding rock of roadway, meanwhile, the cost saving and boosting yield was made sure. This paper is based on the physical and mechanical parameters of coal seam roof and floor of working face 1357w, numerical simulation method was took, and the parameters of anchor bolt support suitable for the roadway with working face were also studied. The result of study could provide theoretical basis for later projects.

2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Jucai Chang ◽  
Kai He ◽  
Zhiqiang Yin ◽  
Wanfeng Li ◽  
Shihui Li ◽  
...  

In view of the influence of mining stress on the stability of the surrounding rock of inclined roof mining roadways in deep mines, the surrounding rock stability index is defined and solved based on the rock strength criterion and the stress distribution. The mining roadway of the 17102(3) working face of the Pansan Coal Mine is used as the engineering background and example. The surrounding rock’ stabilities under the conditions of no support and bolt support are analyzed according to the surrounding rock’s stability index and the deformation data. The results show that the areas of low wall and high wall instability are 1.68 m2 and 2.12 m2, respectively, and the low wall is more stable than the high wall; the areas of the roof and floor instability are 0.33 m2 and 0.35 m2, respectively, and the roof and floor are more stable than the two sides. During mining, the area of instability greatly increases at first, then decreases to 0, and reaches a maximum value at the peak of the abutment pressure. The stability of the surrounding rock decreases first and then increases. Compared with the end anchoring bolt support, the full-length anchoring bolt support reduces the area of instability to a greater extent, and the full-length anchoring bolt support effect is better. The surrounding rock in the end anchoring zone and the full-length anchoring zone began to deform significantly at 200 m and 150 m from the working face, respectively. This indicates that the control effect of the full-length anchoring bolt support is better and verifies the rationality of the surrounding rock stability index to describe the instability characteristics. This research method can provide a theoretical reference for analysis of the stability characteristics and support design of different cross-section roadways.


2014 ◽  
Vol 580-583 ◽  
pp. 1268-1272 ◽  
Author(s):  
Xiang Xing Li ◽  
Ke Gang Li

A mine plans to exploit the low dip thin phosphate deposit by room-and-pillar mining. But a township highway is just above the orebody, and its distance is only 80m, in order to better control the ground pressure in stopes and ensure the operation security, the size of room and pillar must be reasonably designed to maintain the stability of stopes and surrounding rock. The 3D-σ numerical simulation method was applied to analyze the surrounding rock stability in different stope structure parameters. The results show that when holding the size of pointed prop unchanged, the surrounding rock stability would decline with the increase of room width and pillar spacing, for security, the mining plan, the pointed prop is 3×3 m, the stope width and pillar spacing is not more than 9 m, were considered to be one of the optimal. In addition, it is important to emphasize that if the mining depth exceeds 300m, some methods, such as decreasing the spacing of stope and pointed props or increasing the pillar size, need to be taken to avoid the stope instability caused by greater ground pressure.


2021 ◽  
pp. 014459872110093
Author(s):  
Wei Zhang ◽  
Jiawei Guo ◽  
Kaidi Xie ◽  
Jinming Wang ◽  
Liang Chen ◽  
...  

In order to mine the coal seam under super-thick hard roof, improve the utilization rate of resources and prolong the remaining service life of the mine, a case study of the Gaozhuang Coal Mine in the Zaozhuang Mining Area has been performed in this paper. Based on the specific mining geological conditions of ultra-close coal seams (#3up and #3low coal seams), their joint systematic analysis has been performed, with the focus made in the following three aspects: (i) prevention of rock burst under super-thick hard roof, (ii) deformation control of surrounding rock of roadways in the lower coal seam, and (iii) fire prevention in the goaf of working face. Given the strong bursting tendency observed in upper coal seam and lower coal seam, the technology of preventing rock burst under super-thick hard roof was proposed, which involved setting of narrow section coal pillars to protect roadways and interleaving layout of working faces. The specific supporting scheme of surrounding rock of roadways in the #3low1101 working face was determined, and the grouting reinforcement method of local fractured zones through Marithan was further proposed, to ensure the deformation control of surrounding rock of roadways in lower coal seams. The proposed fire prevention technology envisaged goaf grouting and spraying to plug leaks, which reduced the hazard of spontaneous combustion of residual coals in mined ultra-close coal seams. The technical and economic improvements with a direct economic benefit of 5.55 million yuan were achieved by the application of the proposed comprehensive technical support. The research results obtained provide a theoretical guidance and technical support of safe mining strategies of close coal seams in other mining areas.


2014 ◽  
Vol 716-717 ◽  
pp. 735-738 ◽  
Author(s):  
Peng Cheng ◽  
Jian Zhang ◽  
Ai Qing Liu

Aiming at the current situation of anchor bolt and cable arrangement in mine roadway support, the paper analysis the mechanical characteristics and mechanism of bolts and cables, and numerical simulation method is used to comparison and analysis of pre-tension distribution characteristics under different anchor bolt-cable arrangement. The research indicated that separate anchor bolt-cable layout in different sections, anchor bolt and cable force stable equilibrium, coordinate with each other, at this time roadway surrounding rock of shallow and deep pretension distribution more reasonable, can play a role of bolt anchor cable synergistic action, and form the best pre-tension load-bearing structure, which is helpful to keep the stability of coal roadway.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Wenyu Lv ◽  
Kai Guo ◽  
Jianhao Yu ◽  
Xufeng Du ◽  
Kun Feng

The movement of the overlying strata in steeply dipping coal seams is complex, and the deformation of roof rock beam is obvious. In general, the backfill mining method can improve the stability of the surrounding rock effectively. In this study, the 645 working face of the tested mine is used as a prototype to establish the mechanical model of the inclined roof beam using the sloping flexible shield support backfilling method in a steeply dipping coal seam, and the deflection equation is derived to obtain the roof damage structure and the maximum deflection position of the roof beam. Finally, numerical simulation and physical similarity simulation experiments are carried out to study the stability of the surrounding rock structure under backfilling mining in steeply dipping coal seams. The results show the following: (1) With the support of the gangue filling body, the inclined roof beam has smaller roof subsidence, and the maximum deflection position moves to the upper part of working face. (2) With the increase of the stope height, the stress and displacement field of the surrounding rock using the backfilling method show an asymmetrical distribution, the movement, deformation, and failure increase slowly, and the increase of the strain is relatively stable. Compared with the caving method, the range and degree of the surrounding rock disturbed by the mining stress are lower. The results of numerical simulation and physical similarity simulation experiment are generally consistent with the theoretically derived results. Overall, this study can provide theoretical basis for the safe and efficient production of steeply dipping coal seams.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5344
Author(s):  
Feng Cui ◽  
Shuai Dong ◽  
Xingping Lai ◽  
Jianqiang Chen ◽  
Chong Jia ◽  
...  

In the inclination direction, the fracture law of a longwall face roof is very important for roadway control. Based on the W1123 working face mining of Kuangou coal mine, the roof structure, stress and energy characteristics of W1123 were studied by using mechanical analysis, model testing and engineering practice. The results show that when the width of W1123 is less than 162 m, the roof forms a rock beam structure in the inclined direction, the floor pressure is lower, the energy and frequency of microseismic (MS) events are at a low level, and the stability of the section coal pillar is better. When the width of W1123 increases to 172 m, the roof breaks along the inclined direction, forming a double-hinged structure, the floor pressure is increased, and the frequency and energy of MS events also increases. The roof gathers elastic energy release, and combined with the MS energy release speed it can be considered that the stability of the section coal pillar is better. As the width of W1123 increases to 184 m, the roof in the inclined direction breaks again, forming a multi-hinged stress arch structure, and the floor pressure increases again. MS high-energy events occur frequently, and are not conducive to the stability of the section coal pillar. Finally, through engineering practice we verified the stability of the section coal pillar when the width of W1123 was 172 m, which provides a basis for determining the width of the working face and section coal pillar under similar conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Chaowen Hu ◽  
Xiaojie Yang ◽  
Ruifeng Huang ◽  
Xingen Ma

As the mining depth increases, under the influence of high ground stress, the surrounding rock of deep mine roadways shows soft rock characteristics. Under the influence of mining disturbance at the working face, large deformation of the roadway has occurred. To control the large deformation of the roadway, many mines have adopted the form of combined support, which has continuously increased the support strength and achieved a certain effect. However, since the stress environment of the surrounding rock of the roadway has not been changed, large deformation of the roadway still occurs in many cases. Based on the theoretical basis of academician Manchao He’s “short cantilever beam by roof cutting,” this paper puts forward the plan of “presplitting blasting + combined support” to control the large deformation of the deep mine roadways. Without changing the original support conditions of the roadway, presplitting blasting the roof strata of the roadway, by cutting off the mechanical connection of the roof strata between the roadway and gob, improves the stress distribution of the roadway to control the large deformation. Through field tests, the results show that after presplitting blasting the roadway roof, the roadway roof subsidence is reduced by 47.9%, the ribs displacement is reduced by 45.7%, and the floor heave volume is reduced by 50.8%. The effect is significant.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Junwen Zhang ◽  
Yulin Li

There are series of problems faced by most of the coal mines in China, ranging from low-coal recovery rate and strained replacement of working faces to gas accumulation in the upper corner of coalfaces. Based on the gob-side entry retaining at the No. 18205 working face in a coal mine in Shanxi Province, theoretical analysis, numerical simulation, and engineering practice were comprehensively used to study the mechanical characteristics of the influence of the width of the filling body beside the roadway and the stability of surrounding rock in a high-gas-risk mine. The rational width of the filling body beside the roadway was determined, and a concrete roadway-side support with a headed reinforcement-integrated strengthening technique was proposed, which have been applied in engineering practice. The stability of the filling body beside the roadway is mainly influenced by the movement of the overlying rock strata, and the stability of the surrounding rock can be improved effectively by rationally determining the width of the filling body beside the roadway. When the width of the roadway-side filling body is 2.5 m, the surrounding rock convergence of the gob-side entry retaining is relatively small at only 5% of the convergence ratio. It has been shown that the figure for roof separation is relatively low, and strata behaviors are relatively alleviated and gas density do not exceed the limit, which are the best results of gob-side entry retaining. The results of this research can provide theoretical guidance for excavation of coal mines with similar geological conditions and have some referential significance to safety and efficient production in coal mines.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 381 ◽  
Author(s):  
Xingping Lai ◽  
Huicong Xu ◽  
Pengfei Shan ◽  
Yanlei Kang ◽  
Zeyang Wang ◽  
...  

The stability of the surrounding rock is the key problem regarding the normal use of coal mine roadways, and the floor heave of roadways is one of the key factors that can restrict high-yield and high-efficiency mining. Based on the 1305 auxiliary transportation roadway geological conditions in the Dananhu No. 1 Coal Mine, Xinjiang, the mechanism of roadway floor heave was studied by field geological investigation, theoretical analysis, and numerical simulation. We think that the surrounding rock of the roadway presents asymmetrical shrinkage under the original support condition, and it is the extrusion flow type floor heave. The bottom without support and influence of mining are the important causes of floor heave. Therefore, the optimal support scheme is proposed and verified. The results show that the maximum damage depth of the roadway floor is 3.2 m, and the damage depth of the floor of roadway ribs is 3.05 m. The floor heave was decreased from 735 mm to 268 mm, and the force of the rib bolts was reduced from 309 kN to 90 kN after using the optimization supporting scheme. This scheme effectively alleviated the “squeeze” effect of the two ribs on the soft rock floor, and the surrounding rock system achieves long-term stability after optimized support. This provides scientific guidance for field safe mining.


2021 ◽  
Author(s):  
jianjun SHI ◽  
Feng Jicheng ◽  
Peng Rui ◽  
Zhu Quanjie

Abstract The gob-side entry driving is driving in low pressure area, which bears less support pressure and is easy to maintain, so it is widely used. Taking the gob-side entry driving in thick coal seam of Dongtan Coal Mine as an example, the reasonable size of pillar and the section of roadway are numerically simulated by combining numerical with measurement, and the roadway support is designed. According to the distribution of lateral stress in working face, eight pillars of different sizes are designed. By simulating and comparing the stress distribution of surrounding rock and the development range and shape of plastic zone in different positions, the pillar size of gob-side entry driving is optimized to be 4.5m. According to the results of optimization of roadway section, the section of straight wall semi-circular arch roadway is adopted. According to the analysis, the roadway is supported by bolt + steel mesh + anchor cable. By observing the stability of roadway, it provides experience for the stability study of roadway the gob-side entry driving with small pillar in thick seam.


Sign in / Sign up

Export Citation Format

Share Document