Improved Wear Resistance of AISI 304L by Cladding Boride Layers Using the GTAW Process

2014 ◽  
Vol 966-967 ◽  
pp. 386-396 ◽  
Author(s):  
Yuan Ching Lin ◽  
Jia Bin Bai ◽  
Jiun Nan Chen

The austenitic stainless steel (SS) of AISI 304L is widely used in industrial applications because of its superior anti-corrosion resistance. However, the material suffers from a lower hardness, thus reducing wear resistance. In this study, AISI 304L was clad with tungsten boride (WB) ceramic powder using the gas tungsten arc welding (GTAW) process to increase surface hardness and improve wear resistance. The microstructure of the cladding layer was investigated using an X-ray diffractometer (XRD), an electron probe microanalyzer (EPMA), and a scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). The hardness distribution of the cladding layer was measured using a micro-Vickers hardness tester. Wear tests were conducted with a pin-on-disc tribometer at the ambient condition, while simultaneously monitoring friction coefficient variation. Surface frictional temperature was recorded with K-type thermocouples during wear tests. The worn morphology of the tested specimens was observed by SEM to identify wear characteristics. The results show that WB cladding successfully increased the hardness and the wear resistance of AISI 304L. Keywords: GTAW, WB, wear resistance, microstructure

2018 ◽  
Vol 25 (03) ◽  
pp. 1850077 ◽  
Author(s):  
MA XIAOLI ◽  
WANG KAIMING ◽  
FU HANGUANG ◽  
JU JIANG ◽  
LEI YONGPING ◽  
...  

Mo alloying Fe-based coating was fabricated on the surface of Q235 steel by using 6 kW fiber laser. The effects of Mo additions on the microstructure, microhardness and wear resistance of the cladding layer were studied by means of optical microscopy (OM), scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS), Vickers hardness tester and M-200 ring block wear tester. Research results showed that the microstructure of Mo-free cladding layer mainly consisted of matrix and eutectic structure. The matrix was martensite and retained austenite. The eutectic structure mainly consisted of M2(B,C) and M7(C,B)3 type of eutectic borocarbides. With the increase of Mo content, there was no significant change in the matrix. However, the eutectic structure was transformed from M2(B,C)- and M7(C,B)3-type borocarbides into M2(B,C)-, M7(C,B)3- and M[Formula: see text](C,B)6-type borocarbides. When the content of Mo is 4.0[Formula: see text]wt.%, the Mo2C-type carbide appear on the matrix, and parts of the borocarbide networks are broken. The change of microhardness of the cladding layer was not obvious with the increase of Mo content. But the increase of Mo content increases the wear resistance of the cladding layer. The wear resistance of cladding layer with 4.0[Formula: see text]wt.% Mo is 2.4 times as much as the cladding layer which is Mo-free.


2021 ◽  
Vol 19 (2) ◽  
pp. 77-82
Author(s):  
Fadhil K. Farhan ◽  
Aws Abbas Hussein ◽  
Ali Q. Tuama

The liquid and mechanical mixing method was used in addition to ultrasound technology to prepare samples according to standard conditions. The percentage of cementing with ceramic powder was adopted from 1% to 4% as a weight ratio, and by using mixing drivers, nanocomposites were prepared depending on the theoretical density of the components. The velvet density was measured using Archimedes' method, and the results showed a successive improvement and increase in density with the weight ratio of addition. The results of the particulate hardness test showed a significant improvement in the results of the prepared nanostructures compared to the base sample (pure epoxy). With regard to the properties of wear resistance (wear modulus) using the screw-on-disk method, the cemented samples showed a higher wear resistance compared to the base sample. The results were interpreted based on the values of density and hardness in addition to the properties possessed by the ceramic powder of high surface area and average granular size of 32 nanometers through scanning electron microscopy. In this work, nanostructures based on (a polymer) supported with nanoscale zirconium dioxide powder were developed.


2010 ◽  
Vol 34-35 ◽  
pp. 1338-1342
Author(s):  
Zheng Guan Ni

through super-hard wear-resistant surface electrode surfacing D707 in Low-carbon steel. We have analysis the effect of welding process parameters and post-weld heat treatment process on low carbon steel surface hardness of cladding layer. The experimental results show that: after quenching hardness value no significant change; But after annealing the hardness value decreased and after annealing the crystal grain of the underlying tissues uniformization become tiny. micro-hardness testing is carried out in the weld cross-section, we have find out that from the base metal to the cladding layer the surface hardness values is getting higher and higher, while the indentation is getting smaller and smaller. Because hardness is a measure of wear resistance materials, thus it can indirectly show that when low-carbon steel surface electrode in the super-hard wear-resistant surfacing welding layer, it can improve the surface hardness of low carbon steel and improve wear resistance of low carbon steel surface.


2017 ◽  
Vol 24 (Supp01) ◽  
pp. 1850009 ◽  
Author(s):  
H. X. ZHANG ◽  
H. J. YU ◽  
C. Z. CHEN ◽  
J. J. DAI

In order to improve the wear resistance of Ti alloys, different mass ratios of Ti-Si-Al powders were designed to fabricate hard phases reinforced intermetallic matrix composite coatings on the Ti-6Al-4V substrate by laser cladding. The corresponding coatings were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and high resolution transmission microscopy (HRTEM). The HV-1000 hardness tester and MM200 wear test machine were employed to test the hardness and the wear resistance of the composite coatings, respectively. The composite coatings mainly consisted of the reinforcements of Ti5Si3, Ti3AlC2 and Ti7Al5Si[Formula: see text] and the matrix of Ti3Al, TiAl, TiAl3 and [Formula: see text]-Ti. The micro-hardness of the Ti-35Al-15Si coating was from 956 HV[Formula: see text] to 1130 HV[Formula: see text], which was approximately 3–4 times of the substrate and the highest in the three samples. The wear rate of the Ti-35Al-15Si coating was 0.023[Formula: see text]cm3[Formula: see text][Formula: see text][Formula: see text]min[Formula: see text], which was about 1/4 of the Ti-6Al-4V substrate. It was the lowest in the three samples.


2014 ◽  
Vol 556-562 ◽  
pp. 189-192 ◽  
Author(s):  
Shun Min Zhu ◽  
Ya Dong Zhang

With the laser cladding technology, 70%Ni60A+30%WC cladding layer was cladded on the surface of Q345 steel. And the phase, microstructure and wear resistance of cladding layer were analyzed. Experiments show that the Ni-based WC alloy laser cladding treatment on Q345 steel surface have a great upgrade on grain refinement, surface hardness and wear-resistance of Q345 steel surface.


Author(s):  
Hamdan Gowhar Nahvi

Abstract: Surface of a material can be improved by depositing the filler metal for the enhancement of various properties. Surface should be harder than substrate material for surface improvement. This surface improvement is also known as surfacing. In present research Mild steel specimens of size 140×35×40 were used to deposit surfacing layers and study the feasibility of iron/aluminum with varying compositions on low carbon steel deposited by GTAW process. Specimens for hardness and oxidation resistance were prepared. While studying oxidation of surfaced and un-coated area (base material), oxidation test resulted that the oxidation occurred on surface of base metal (un-coated area) after heating at different temperatures and time intervals. Specimens kept at 500˚C, 700˚C temperatures for 3, 6, 9 hours to get oxidized from un-coated surface but no mark of oxidation and pitting was visible at surfaced area but pitting of un-coated area occurred at 700˚C temperature. Oxidation had no effect to surfaced area. Low temperature oxidation test specimens gave only weight loss from un-coated portion but high temperature oxidation gave high amount of weight reduction due to pitting occurred on un-coated portion. The amount of weight loss of specimens increased with increase in furnace holding time at constant temperature. With increase in temperature oxidation of un-coated area of specimens also increased and pitting action occurred on un-coated area of specimens at high temperature. Further, for the various wear tests the cylindrical pins of 8 mm diameter with spherical tip 4 mm radius was made. Wear tests were carried out on pin on disc sliding wear testing machine. The comparison of wear rate loss was studied with constant sliding distance, varying load and sliding velocity of different compositions of iron/aluminum surfacing and substrate material. Hardness and wear resistance of composition were increased with increase in percentage of Fe element in composition. Composition C1 (Fe:Al/70:30) had high hardness and high wear resistance as compared to composition C2 (Fe:Al/30:70) and C3 (Fe:Al/50:50). Composition C3 (Fe:Al/50:50) had better hardness and wear resistance as compared composition C2 (Fe:Al/70:30). Keywords: Surface improvement, Fe-Al intermetallic, GTAW process, Sliding wear.


2015 ◽  
Vol 67 (3) ◽  
pp. 262-268 ◽  
Author(s):  
Adalet Zeren

Purpose – The purpose of this paper is to understand the effect of graphite content on the properties of aluminum alloy/silicon carbide/granite (Al/SiC/Gr) composites. Design/methodology/approach – Hardness and wear tests were applied to the powder metallurgical composites, and microstructural characterization was conducted. Findings – Optimum graphite content for maximum wear resistance is reported as weight 6 per cent. Originality/value – Results of this study may help light weight Al/SiC/Gr composites to be used in different industrial applications.


2017 ◽  
Vol 24 (4) ◽  
pp. 541-546 ◽  
Author(s):  
Hongxia Zhang ◽  
Huijun Yu ◽  
Chuanzhong Chen

AbstractThe composite coatings were fabricated by laser cladding Ni60A/B4C pre-placed powders on the surface of Ti-6Al-4V alloy for improving wear resistance and hardness of the substrate. In this research, the composite coatings were studied by means of X-ray diffraction, scanning electron microscope and energy dispersive spectrometer. The sliding wear tests were performed using MM200 wear test machine. The hardness of the coatings was tested by HV-1000 hardness tester. After laser cladding, it was found that there was a good metallurgical bond between the laser cladding coating and Ti-6Al-4V substrate. The composite coatings were mainly composed of the matrix of γ-Ni and a little Ni3Ti and the reinforcements of TiB2, TiC and CrB. The hardness of the sample of Ni60A-5B4C was approximately 2.5–3.5 times that of the Ti-6Al-4V substrate. The hardness of the sample of Ni60A-10B4C was 30% higher than that of sample 1. The wear resistance of samples 1 and 2 were 11 times and 10 times that of the substrate, respectively.


2015 ◽  
Vol 22 (03) ◽  
pp. 1550044 ◽  
Author(s):  
H. X. ZHANG ◽  
H. J. YU ◽  
C. Z. CHEN

The composite coatings were fabricated by laser cladding Al / TiN pre-placed powders on Ti –6 Al –4 V substrate for enhancing wear resistance and hardness of the substrate. The composite coatings were analyzed by means of X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The sliding wear tests were performed by MM200 wear test machine. The hardness of the coatings was tested by HV-1000 hardness tester. After laser cladding, it was found that there was a good metallurgical bond between the coating and the substrate. The composite coatings were mainly composed of the matrix of β- Ti  ( Al ) and the reinforcements of titanium nitride ( TiN ), Ti 3 Al , TiAl and Al 3 Ti . The hardness and wear resistance of the coatings on four samples were greatly improved, among which sample 4 exhibited the highest hardness and best wear resistance. The hardness of the coating on sample 4 was approximately 2.5 times of the Ti –6 Al –4 V substrate. And the wear resistance of sample 4 was four times of the substrate.


2014 ◽  
Vol 1030-1032 ◽  
pp. 259-262 ◽  
Author(s):  
Hai Yang ◽  
Ren Bao Jiao ◽  
Shu Yang Wang

To improve the harrow disk made of 65Mn steel working life, an ion implanting metal in order to obtain tungsten carbide treatment was proposed in this work. Microstructure and phase composition of 65Mn steel obtained by ion implanting tungsten carbide process were analyzed by optical microscope and XRD, respectively. The surface hardness was tested by microscopic hardness tester, and the wear resistant performance of the wear layer was tested by abrader abrasor. The results showed that the micro-hardness of ion implanting tungsten carbide layer can be reached 1100 HV0.2, higher than that of 65Mn steel, the thickness of tungsten carbide layer was 400μm, which greatly improve the wear resistance. Harrow disk after the ion implanting tungsten carbide exhibited the excellent wear resistance in the sandy soil, and its working life was more than twice the length of the genera treatment harrow disk.


Sign in / Sign up

Export Citation Format

Share Document