Wear Resistance of Ion Implanting Tungsten Carbide on 65Mn Steel Used as Harrow Disk

2014 ◽  
Vol 1030-1032 ◽  
pp. 259-262 ◽  
Author(s):  
Hai Yang ◽  
Ren Bao Jiao ◽  
Shu Yang Wang

To improve the harrow disk made of 65Mn steel working life, an ion implanting metal in order to obtain tungsten carbide treatment was proposed in this work. Microstructure and phase composition of 65Mn steel obtained by ion implanting tungsten carbide process were analyzed by optical microscope and XRD, respectively. The surface hardness was tested by microscopic hardness tester, and the wear resistant performance of the wear layer was tested by abrader abrasor. The results showed that the micro-hardness of ion implanting tungsten carbide layer can be reached 1100 HV0.2, higher than that of 65Mn steel, the thickness of tungsten carbide layer was 400μm, which greatly improve the wear resistance. Harrow disk after the ion implanting tungsten carbide exhibited the excellent wear resistance in the sandy soil, and its working life was more than twice the length of the genera treatment harrow disk.

2017 ◽  
Vol 23 (3) ◽  
pp. 251
Author(s):  
Shijing Lu ◽  
Fanna Meng ◽  
Wei Cai ◽  
Wei Wei ◽  
Jing Hu

<p class="AMSmaintext">QPQ salt bath treatment of H13 steel was conducted by nitriding at the same temperature of 565℃ for various times, followed by the same post-oxidation process. Optical microscope, micro-hardness tester, X-ray diffraction and wear resistance tester were employed to characterize the microstructure, phase constituents, micro-hardness and wear resistance of the treated specimens. The results showed a compound layer mainly composed of ε-Fe<sub>2-3</sub>N and diffusion layer were formed during salt bath nitriding and a thin oxide layer composed of Fe<sub>3</sub>O<sub>4</sub> was formed by post-oxidation, and the compound layer thickness increases with the nitriding time. The maximum surface hardness value of 1441HV<sub>0.3</sub>was obtained after nitriding at 565℃ for 150min, which is as three times high as that of untreated sample. Meanwhile the wear resistance of H13 steel is significantly improved by QPQ treatment, 150min is the optimum nitriding time to improve the surface hardness and wear resistance of H13 steel.</p>


2017 ◽  
Vol 893 ◽  
pp. 340-344
Author(s):  
Sheng Dai ◽  
Dun Wen Zuo ◽  
Xian Rui Zhao ◽  
Jin Fang Wang

To improve the surface hardness and wear resistance of metal parts. Ni-based chromic carbidecomposite coating was prepared on the carbon steel (0.45 mass% C) substrates by laser cladding. Microstructure and wear properties of composite coatings were investigated by SEM, EDS, XRD, Vickers micro-hardness tester and wear machine. The results show that good metallurgical bonding between the Ni-based chromic carbidecomposite coating and carbon steel substrate. Micro-hardness of Ni-based Cr3C2 composite coating along the layer depth presents an evident stepladder distribution. The average micro-hardness of the laser clad coating is about 950 HV. The result of wear experiment shows that Ni-based Cr3C2 composite coating processes good wear resistance.


2012 ◽  
Vol 271-272 ◽  
pp. 3-7
Author(s):  
Long Wei ◽  
Zong De Liu ◽  
Xin Zhi Li ◽  
Ming Ming Yuan ◽  
Cheng Yuan Zhong

Cr3C2-NiCr has high quality of wear resistant properties and is widely used in abrasive environment. In this paper, Cr3C2-NiCr coating was prepared on 45 steel by laser cladding technology. Analysis and research of the coatings were achieved by SEM and XRD to determine the main component and the different region on coatings. The hardness and the element component were investigated by micro-hardness tester and EDS. Abrasion tests were performed to contrast the wear resistance of two materials. The results indicate that the hardness of the coatings is nearly 3 times as the substrate. The coatings are well combined with the substrate and the phase of Cr3C2 has a large proportion in the coatings. Abrasion tests show that the average of wear rate on substrate is 5.2 times as the coatings.


2011 ◽  
Vol 411 ◽  
pp. 527-531
Author(s):  
Bing Zhang ◽  
Zhong Wei Chen ◽  
Shou Qian Yuan ◽  
Tian Li Zhao

In this paper, accumulative roll bonding (ARB) has been used to prepare the Al/Mg alloy multilayer structure composite materials with 1060Al sheet and MB2 sheet. The evolution of microstructure of the cladding materials during ARB processes was observed by optical microscope, scanning electron microscopy, and micro-hardness was measured by micro-hardness tester. The results show that a multilayer structure material of Al/Mg alloy with excellent bonding characteristics and fine grained microstructure was prepared by ARB processes. With the ARB cycles increasing, Mg alloy layer in multilayer composite material was necked and fractured, and the hardness of the Al and Mg alloy was increased. Average grain size was less than 1μm after ARB4 cycles.


Mechanik ◽  
2017 ◽  
Vol 90 (11) ◽  
pp. 1060-1062
Author(s):  
Sławomir Spadło ◽  
Wojciech Depczyński ◽  
Piotr Młynarczyk ◽  
Tadeusz Gajewski ◽  
Jarosław Dąbrowa

Microstructure and mechanical tests of welds of thin sheets made from nickel-based super-alloys (Haynes 230 and Hastelloy X) were presented. The welds were made using the resistive-pulse micro-welding method using the WS 7000S device. The micro-hardness of the joints was measured with a Matsuzawa Vickers MX 100 hardness tester at 100 G (0.98 N). Metallographic observations of the prepared micro-sections were performed using the Nikon Eclipse MA200 optical microscope at various magnifications. The metallographic microstructure studies were supplemented by linear analysis of the chemical composition, for which the OXFORD X-MAX electron microscope was applied.


2014 ◽  
Vol 966-967 ◽  
pp. 386-396 ◽  
Author(s):  
Yuan Ching Lin ◽  
Jia Bin Bai ◽  
Jiun Nan Chen

The austenitic stainless steel (SS) of AISI 304L is widely used in industrial applications because of its superior anti-corrosion resistance. However, the material suffers from a lower hardness, thus reducing wear resistance. In this study, AISI 304L was clad with tungsten boride (WB) ceramic powder using the gas tungsten arc welding (GTAW) process to increase surface hardness and improve wear resistance. The microstructure of the cladding layer was investigated using an X-ray diffractometer (XRD), an electron probe microanalyzer (EPMA), and a scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). The hardness distribution of the cladding layer was measured using a micro-Vickers hardness tester. Wear tests were conducted with a pin-on-disc tribometer at the ambient condition, while simultaneously monitoring friction coefficient variation. Surface frictional temperature was recorded with K-type thermocouples during wear tests. The worn morphology of the tested specimens was observed by SEM to identify wear characteristics. The results show that WB cladding successfully increased the hardness and the wear resistance of AISI 304L. Keywords: GTAW, WB, wear resistance, microstructure


2007 ◽  
Vol 539-543 ◽  
pp. 1159-1164
Author(s):  
Mirko Sokovic ◽  
Leszek Adam Dobrzański ◽  
Janez Kopač ◽  
Ladislav Kosec

The paper presents investigation results of tribological and cutting properties of the coatings deposited with the PVD and CVD techniques on cutting inserts made from the Al2O3 + TiC tool ceramics. Tests were carried out on the inserts made from ceramics, uncoated and PVD or CVD-coated with gradient, mono-, multilayer and multicomponent hard wear resistant coatings composed of TiN, TiCN, TiAlN, TiAlSiN and Al2O3 layers. Substrate hardness tests and micro hardness tests of the deposited coatings were made on the ultra-micro-hardness tester. It was demonstrated, basing on the technological cutting tests of grey cast iron (260 HB), that putting down onto the tool ceramics the thin anti-wear PVD and CVD coatings increases their abrasion wear resistance, which has a direct effect on extending tool life of the cutting edge.


2013 ◽  
Vol 813 ◽  
pp. 345-350
Author(s):  
Xiong Wei Wang ◽  
Xiao Song Jiang ◽  
De Gui Zhu ◽  
Luo Zhang

Al-Si-Al2O3 composites were prepared by powder metallurgy with in-situ synthesis technology. The recovery and recrystallization behavior of Al-Si-Al2O3 composites which underwent compression and then heat-treatment under different temperature were studied using micro-hardness tester, optical microscope (OM) and scanning electron microscopy (SEM) . The results showed that the hardness of composites increased dramatically after compression, and the sample containing 5wt% Si was increasing more evidently than the sample including 10wt%Si. Heat treatment gradually eliminated work hardening; meanwhile the fact that the hardness of composites trended to decline greatly when subjected to annealing suggested occurrence of recovery and recrystallization inside the composites. Recrystallization nucleation preferentially took place in the region near the particle, while the growth of recrystallized grains can also be hindered owning to the pining effect of particles. Depending on the analysis of microstructure and microhardness, it can be concluded that the recrystallization temperature of Al-wt.5%Si-Al2O3 composites was 500°C and the Al-wt.10%Si-Al2O3 composites was 525°C.


2016 ◽  
Vol 840 ◽  
pp. 331-335
Author(s):  
Nur Amira Mohd Rabani ◽  
Zakiah Kamdi

Cemented tungsten carbides have been paid much attention due its better mechanical properties with excellent combination of hardness and toughness characteristics. The hard WC particles in the coating provide hardness and wear resistance, while the ductile binder such as Co and Ni contribute to toughness and strength. WC-17wt.% Co and WC-9wt.% Ni powders have been sprayed by the HVOF method to form coatings approximately 300μm and 150μm thick onto AISI 1018 steel substrate. Both coatings have been prepared and supplied by an external vendor. The coatings were examined using optical microscope (OM), scanning electron microscope (SEM), and X-Ray diffraction (XRD). The hardness of both coatings were also measured using Vickers micro-hardness tester. The microstructure of the coatings has been analyzed and found to consist of WC, brittle W2C phase, metallic W phase, and amorphous binder phase of Co and Ni. It is found that WC-Ni has a higher hardness value compared to WC-Co due to high porosity distribution.


Sign in / Sign up

Export Citation Format

Share Document