Microstructure and Wear Resistance of Cu0.9NiAlCoCrFe High Entropy Alloy Coating on AZ91D Magnesium Alloys by Laser Cladding

2014 ◽  
Vol 989-994 ◽  
pp. 246-250 ◽  
Author(s):  
Kai Jin Huang ◽  
Yu Yue Wang ◽  
Xin Lin

To improve the wear properties of AZ91D magnesium alloys, a Cu0.9NiAlCoCrFe high entropy alloy (HEA) coating was fabricated on AZ91D magnesium alloys by laser cladding using prealloyed Cu0.9NiAlCoCrFe powders. The microstructure of the HEA coating was characterized by OM, SEM and XRD. The wear resistance of the HEA coating was evaluated under dry sliding wear test condition at room temperature. The results show that the HEA coating mainly consists of a simple BCC solid solution phase. The HEA coating exhibits excellent wear resistance. The main wear mechanisms of the HEA coating and the AZ91D substrate were different, the former dominated by oxidative abrasive wear and the latter suffered from both adhesive and abrasive wear.

2014 ◽  
Vol 644-650 ◽  
pp. 4766-4771
Author(s):  
Kai Jin Huang ◽  
Yu Yue Wang ◽  
Xin Lin

To improve the wear properties of AZ91D magnesium alloys, a AlFeCuCoNiCrTi1.5high entropy alloy (HEA) coating was fabricated on AZ91D magnesium alloys by laser cladding using mixed powders of Al, Fe, Cu, Co, Ni, Cr, and Ti. The microstructure of the HEA coating was characterized by OM, SEM, and XRD. The wear resistance of the HEA coating was evaluated under dry sliding wear test condition at room temperature. The results show that the HEA coating mainly consists of a simple BCC solid solution phase. The HEA coating exhibits excellent wear resistance. The main wear mechanisms of the HEA coating and the AZ91D substrate were different, the former dominated by oxidative abrasive wear and the latter suffered from both adhesive and abrasive wear.


Crystals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 352
Author(s):  
Yaning Li ◽  
Hui Liang ◽  
Qiuxin Nie ◽  
Zhaoxin Qi ◽  
Dewei Deng ◽  
...  

CoCrFeNi2V0.5Tix high entropy alloy coatings were synthesized by laser cladding on Ti-6Al-4V (annotated as TC4) substrate. The microstructures, hardness, and wear properties of the coatings were studied in detail. The results showed that these coatings were all composed of body-centered cubic (BCC) solid solution, (Co,Ni)Ti2 phase, and Ti-rich phase. With the increase of Ti content (x in the range of 0–1.0), the hardness of these coatings (about 960 HV) was basically unchanged and stabilized, whereas, when x was increased to 1.25, the correspondent hardness was decreased significantly to about 830 HV. Compared with original substrate, the wear resistance of high-entropy alloy (HEA) coatings was greatly improved. In particular, CoCrFeNi2V0.5Ti0.75 (donated as Ti0.75) exhibited the lowest wear rate, width, and depth of tracks of wear, indicating the best wear resistance. Moreover, the wear mechanisms of Ti0.75 coating were mainly adhesive wear and oxidative wear.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 155
Author(s):  
Zhaolei Sun ◽  
Mingyuan Zhang ◽  
Gaoqi Wang ◽  
Xuefeng Yang ◽  
Shouren Wang

FeCoNiTiAlx (x = 0, 0.5, 1) high-entropy alloy coatings were prepared by laser cladding technology. The phase, microstructure, hardness, wear resistance and corrosion resistance were tested and analyzed. The results showed Al element promoted the conversion from the FCC phase to the BCC phase. The coating presented dendritic structure due to the addition of the Al element, while the number of dendrites increased. And the average hardness of the coating increased from 204 to 623 HV. The addition of the Al element increases the corrosion current density of the coating from 1.270 × 10−5 to 3.489 × 10−5 A/cm2. The wear rate of the coatings decreases with the increase of Al content according to dry friction and wear, which indicates the wear resistance of the coating was improved by adding the Al element. According to the corrosion wear test in 3.5% NaCl solution, it can be found that the wear rate of the coating increases firstly and then decreases with the addition of the Al element, which indicates that the addition of the Al element intensifies the wear of the coating in 3.5% NaCl solution.


2019 ◽  
Vol 10 (1) ◽  
pp. 49 ◽  
Author(s):  
Dezheng Liu ◽  
Jing Zhao ◽  
Yan Li ◽  
Wenli Zhu ◽  
Liangxu Lin

The FeCoCrNiBx high-entropy alloy (HEA) coatings with three different boron (B) contents were synthesized on Q245R steel (American grade: SA515 Gr60) by laser cladding deposition technology. Effects of B content on the microstructure and wear properties of FeCoCrNiBx HEA coating were investigated. In this study, the phase composition, microstructure, micro-hardness, and wear resistance (rolling friction) were investigated by X-ray diffraction (XRD), a scanning electron microscope (SEM), a micro hardness tester, and a roller friction wear tester, respectively. The FeCoCrNiBx coatings exhibited a typical dendritic and interdendritic structure, and the microstructure was refined with the increase of B content. Additionally, the coatings were found to be a simple face-centered cubic (FCC) solid solution with borides. In terms of mechanical properties, the hardness and wear resistance ability of the coating can be enhanced with the increase of the B content, and the maximum hardness value of three HEA coatings reached around 1025 HV0.2, which is higher than the hardness of the substrate material. It is suggested that the present fabricated HEA coatings possess potentials in application of wear resistance structures for Q245R steel.


2017 ◽  
Vol 24 (Supp01) ◽  
pp. 1850009 ◽  
Author(s):  
H. X. ZHANG ◽  
H. J. YU ◽  
C. Z. CHEN ◽  
J. J. DAI

In order to improve the wear resistance of Ti alloys, different mass ratios of Ti-Si-Al powders were designed to fabricate hard phases reinforced intermetallic matrix composite coatings on the Ti-6Al-4V substrate by laser cladding. The corresponding coatings were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and high resolution transmission microscopy (HRTEM). The HV-1000 hardness tester and MM200 wear test machine were employed to test the hardness and the wear resistance of the composite coatings, respectively. The composite coatings mainly consisted of the reinforcements of Ti5Si3, Ti3AlC2 and Ti7Al5Si[Formula: see text] and the matrix of Ti3Al, TiAl, TiAl3 and [Formula: see text]-Ti. The micro-hardness of the Ti-35Al-15Si coating was from 956 HV[Formula: see text] to 1130 HV[Formula: see text], which was approximately 3–4 times of the substrate and the highest in the three samples. The wear rate of the Ti-35Al-15Si coating was 0.023[Formula: see text]cm3[Formula: see text][Formula: see text][Formula: see text]min[Formula: see text], which was about 1/4 of the Ti-6Al-4V substrate. It was the lowest in the three samples.


2019 ◽  
Vol 956 ◽  
pp. 154-159 ◽  
Author(s):  
Hui Liang ◽  
Bing Yang Gao ◽  
Ya Ning Li ◽  
Qiu Xin Nie ◽  
Zhi Qiang Cao

For the purpose of expanding the application scope of HEA coating manufactured on the surface modification of materials, in this work, the Al1.5CrFeNiTi0.5 and Al1.5CrFeNiTi0.5W0.5 HEA coatings were successfully manufactured using laser cladding method on SUS304. The microstructures and wear resistance of coatings are researched systematically. It is found that the W0 and W0.5 HEA coatings all exhibit the dendritic structure, which are constituted by BCC phases and Laves phases. With W element addition, the phase structures of W0.5 coating remain unchanged. W is dissolved in both two phases, but the solid solubility in Laves phase is higher compared to that in BCC phase. W0.5 coating with the highest microhardness of 848.34 HV, and the W0 coating with the microhardness of 811.45 HV, both of whose microhardness are four times more than that of SUS304 substrate. Among all samples, the W0.5 coating shows the optimal wear performance because of its larger content of hard second phase ( Laves phase).


Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 915 ◽  
Author(s):  
Kaijin Huang ◽  
Lin Chen ◽  
Xin Lin ◽  
Haisong Huang ◽  
Shihao Tang ◽  
...  

In order to improve the wear and corrosion resistance of an AZ91D magnesium alloy substrate, an Al0.5CoCrCuFeNi high-entropy alloy coating was successfully prepared on an AZ91D magnesium alloy surface by laser cladding using mixed elemental powders. Optical microscopy (OM), scanning electron microscopy (SEM), and X-ray diffraction were used to characterize the microstructure of the coating. The wear resistance and corrosion resistance of the coating were evaluated by dry sliding wear and potentiodynamic polarization curve test methods, respectively. The results show that the coating was composed of a simple FCC solid solution phase with a microhardness about 3.7 times higher than that of the AZ91D matrix and even higher than that of the same high-entropy alloy prepared by an arc melting method. The coating had better wear resistance than the AZ91D matrix, and the wear rate was about 2.5 times lower than that of the AZ91D matrix. Moreover, the main wear mechanisms of the coating and the AZ91D matrix were different. The former was abrasive wear and the latter was adhesive wear. The corrosion resistance of the coating was also better than that of the AZ91D matrix because the corrosion potential of the former was more positive and the corrosion current was smaller.


Coatings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 300 ◽  
Author(s):  
Haijiang Wang ◽  
Wei Zhang ◽  
Yingbo Peng ◽  
Mingyang Zhang ◽  
Shuyu Liu ◽  
...  

FeCoCrNi-Mo high entropy alloy/diamond composite coatings were successfully prepared by high speed laser cladding. A high scanning speed was adopted (>30 mm/s), and the effects of laser power, scanning speed, and diamond content on the microstructure and wear resistance of the composite coating were studied. The processing parameters of laser cladding had significant influence on the dilution ratio, graphitization of diamond, and wear resistance of the composite coatings. When the laser cladding parameters were 3000 W of laser power and the high scanning speed of 50 mm/s, the composite coating exhibited a uniform microstructure, the lowest dilution ratio, and the best wear resistance. The wear resistance of the composite coating was enhanced with the addition of diamond, but microcracks also increased. When the amount of diamond was 15 wt.%, the best combination of microstructures and wear resistance was obtained.


Sign in / Sign up

Export Citation Format

Share Document