Analysis of the Solid Solution Microstructure of (HF) Al-Zn Alloys

2010 ◽  
Vol 303-304 ◽  
pp. 39-53 ◽  
Author(s):  
H. Bedboudi ◽  
A. Bourbia ◽  
M. Draissia ◽  
S. Boulkhessaim ◽  
M.Y. Debili

Rapidly solidified Al-Zn alloys with Zn contents ranging up to 50 wt.% were made under vacuum, by high-frequency (HF) induction melting, from compacted mixture targets of Al and Zn of fine (99.99 % purity) elemental powders. The microstructural characteristics and strengthening mechanisms were investigated. The crystallographic microstructures were characterized by means of X-ray diffraction (XRD) analyses and optical microscopy observations as well as Vickers microhardness testing. Detailed overviews of alloying solubility of zinc in aluminium were given. Extensive solid solutions of CFC Al were found in the (HF) Al-Zn alloys, and a higher Vickers microhardnesses compared to that of pure (HF) aluminium.

2016 ◽  
Vol 12 (2) ◽  
pp. 4244-4254
Author(s):  
Sara Mosaad Mahlab ◽  
Mustafa Kamal ◽  
Abd El-Raouf Mansour

In the present study, Sn70-X at.% -Bi15 at.% -Sb15 at.%- Inx at.%  alloy ( x= 0, 2, 4, 6),  were prepared by melt spinning technique. Optical microscopy, scanning electron microscopy combined with energy dispersive X-ray analysis (SEM-EDX), X-ray diffraction analysis (XRD), and Vickers microhardness (Hv); were used to characterize the phase transformation and the microstructure evolution. The results contribute to the understanding of the microstructure evolution in alloys of the type prepared by melt spinning technique. This work reports on a comparative study of the rapidly solidified, in order to compare the microhardness and microstructural analysis. 


1990 ◽  
Vol 213 ◽  
Author(s):  
Ujjwal Prakash ◽  
Robert A. Buckley ◽  
Howard Jones

ABSTRACTFe-Al-X alloys (X = Cr, Mo) in the composition range 50 to 80 at. % Fe, 0 to 20 at. % X were rapidly solidified by chill-block melt-spinning. As-spun and heat treated ribbons were characterised by optical and electron microscopy and X-ray diffraction. Strengthening mechanisms were identified using microhardness measurements. Tensile fracture surfaces of ribbons reveal ductile to cleavage to intergranular fracture transitions with increasing Al-content. An increasing preponderance of cleavage fracture with increasing ternary substitution for Fe was observed.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2505
Author(s):  
Catalin Panaghie ◽  
Ramona Cimpoeșu ◽  
Bogdan Istrate ◽  
Nicanor Cimpoeșu ◽  
Mihai-Adrian Bernevig ◽  
...  

Zinc biodegradable alloys attracted an increased interest in the last few years in the medical field among Mg and Fe-based materials. Knowing that the Mg element has a strengthening influence on Zn alloys, we analyze the effect of the third element, namely, Y with expected results in mechanical properties improvement. Ternary ZnMgY samples were obtained through induction melting in Argon atmosphere from high purity (Zn, Mg, and Y) materials and MgY (70/30 wt%) master alloys with different percentages of Y and keeping the same percentage of Mg (3 wt%). The corrosion resistance and microhardness of ZnMgY alloys were compared with those of pure Zn and ZnMg binary alloy. Materials were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), linear and cyclic potentiometry, and immersion tests. All samples present generalized corrosion after immersion and electro-corrosion experiments in Dulbecco solution. The experimental results show an increase in microhardness and indentation Young Modulus following the addition of Y. The formation of YZn12 intermetallic phase elements with a more noble potential than pure Zinc is established. A correlation is obtained between the appearance of new Y phases and aggressive galvanic corrosion.


Author(s):  
Nataliya L. Gulay ◽  
Rolf-Dieter Hoffmann ◽  
Jutta Kösters ◽  
Yaroslav M. Kalychak ◽  
Stefan Seidel ◽  
...  

Abstract The equiatomic indide ScPtIn (ZrNiAl type, space group P 6 ‾ $‾{6}$ 2m) shows an extended solid solution Sc3Pt3–xIn3. Several samples of the Sc3Pt3–xIn3 series were synthesized from the elements by arc-melting and subsequent annealing, or directly in a high frequency furnace. The lowest platinum content was observed for Sc3Pt2.072(3)In3. All samples were characterized by powder X-ray diffraction and their lattice parameters and several single crystals were studied on the basis of precise single crystal X-ray diffractometer data. The correct platinum occupancy parameters were refined from the diffraction data. Decreasing platinum content leads to decreasing a and c lattice parameters. Satellite reflections were observed for the Sc3Pt3–xIn3 crystals with x = 0.31–0.83. These satellite reflections could be described with a modulation vector ( 1 3 , 1 3 , γ ) $\left(\frac{1}{3},\frac{1}{3},\gamma \right)$ ( γ = 1 2 $\gamma =\frac{1}{2}$ c* for all crystals) and are compatible with trigonal symmetry. The interplay of platinum filled vs. empty In6 trigonal prisms is discussed for an approximant structure with space group P3m1.


2011 ◽  
Vol 66 (7) ◽  
pp. 671-676 ◽  
Author(s):  
Trinath Mishra ◽  
Rainer Pöttgen

The equiatomic rare earth compounds REPtZn (RE = Y, Pr, Nd, Gd-Tm) were synthesized from the elements in sealed tantalum tubes by high-frequency melting at 1500 K followed by annealing at 1120 K and quenching. The samples were characterized by powder X-ray diffraction. The structures of four crystals were refined from single-crystal diffractometer data: TiNiSi type, Pnma, a = 707.1(1), b = 430.0(1), c = 812.4(1) pm, wR2 = 0.066, 602 F2, 21 variables for PrPt1.056Zn0.944; a = 695.2(1), b = 419.9(1), c = 804.8(1) pm, wR2 = 0.041, 522 F2, 21 variables for GdPt0.941Zn1.059; a = 688.2(1), b = 408.1(1), c = 812.5(1) pm, wR2 = 0.041, 497 F2, 22 variables for HoPt1.055Zn0.945; a = 686.9(1), b = 407.8(1), c = 810.4(1) pm, wR2 = 0.061, 779 F2, 20 variables for ErPtZn. The single-crystal data indicate small homogeneity ranges REPt1±xZn1±x. The platinum and zinc atoms build up three-dimensional [PtZn] networks (265 - 269 pm Pt-Zn in ErPtZn) in which the erbium atoms fill cages with coordination number 16 (6 Pt + 6 Zn + 4 Er). Bonding of the erbium atoms to the [PtZn] network proceeds via shorter RE-Pt distances, i. e. 288 - 293 pm in ErPtZn.


1981 ◽  
Vol 37 (a1) ◽  
pp. C153-C153
Author(s):  
R. Delhez ◽  
Th. H. de Keijser ◽  
E. J. Mittemeijer ◽  
P. van Mourik ◽  
N. M. van der Pers

2015 ◽  
Vol 70 (2) ◽  
pp. 135-141 ◽  
Author(s):  
Theresa Block ◽  
Michael Johnscher ◽  
Stefan Linsinger ◽  
Ute Ch. Rodewald ◽  
Rainer Pöttgen

AbstractThe ternary aurides RE4Mg3Au10 (RE=Y, Nd, Sm, Gd–Dy) and their silver analogues were synthesized by induction melting of the elements in sealed niobium tubes. These intermetallic phases were characterized by powder X-ray diffraction. They crystallize with the Ca4In3Au10-type structure, which, from a geometrical point of view, is a ternary ordered version of Zr7Ni10 with the rare earth and magnesium atoms ordering on the four crystallographically independent zirconium sites. The structures of crystals from three differently prepared gadolinium samples were refined from single-crystal X-ray diffractometer data: Cmca, a=1366.69(3), b=998.07(4), c=1005.54(3) pm, wR2=0.0332, 1234 F2 values, 46 variables for Gd4.43Mg2.57Au10, a=1378.7(1), b=1005.3(1), c=1011.2(1) pm, wR2=0.0409, 1255 F2 values, 48 variables for Gd5.50Mg1.50Au10, and a=1350.2(5), b=995.5(1), c=1009.3(1) pm, wR2=0.0478, 1075 F2 values, 48 variables for Gd5.61Mg1.39Au10. All crystals show substantial Mg/Gd mixing on two sites. The gold atoms form a pronounced two-dimensional substructure with Au–Au distances of 278 to 297 pm in Gd4.43Mg2.57Au10. These gold blocks are condensed via magnesium atoms (278–315 pm Mg–Au). The gadolinium atoms fill larger cavities within the three-dimensional networks. The magnesium vs. gadolinium site preference is a consequence of the different coordination numbers of the cation sites. All phases show homogeneity ranges RE4+xMg3–xAg10 and RE4+xMg3–xAu10. The influence of the synthesis conditions is briefly discussed.


2020 ◽  
Vol 235 (4-5) ◽  
pp. 117-125
Author(s):  
Myroslava Horiacha ◽  
Maximilian K. Reimann ◽  
Jutta Kösters ◽  
Vasyl‘ I. Zaremba ◽  
Rainer Pöttgen

AbstractThe quaternary gallium-rich intermetallic phases RE2Pt3Ga4In with RE = Y and Gd-Tm were synthesized by arc-melting of the elements and subsequent annealing. Small single crystals were obtained by high-frequency annealing of the samples in sealed tantalum ampoules. The polycrystalline samples were characterized through their X-ray powder patterns. The RE2Pt3Ga4In phases crystallize with a site ordering variant of the orthorhombic Y2Rh3Sn5 type, space group Cmc 21. The structures of Gd2Pt3Ga4In, Dy2Pt3Ga4.14In0.86, Er2Pt3Ga4.17In0.83 and Tm2Pt3Ga4.21In0.79 were refined from single-crystal X-ray diffraction data. The single crystals reveal small homogeneity ranges RE2Pt3Ga4±xIn1±x. The striking geometrical structural building units are slightly distorted trigonal prisms around the three crystallographically independent platinum atoms: Pt1@RE4Ga2, Pt2@RE2Ga4 and Pt3@RE2Ga2In2. Based on these prismatic building units, the RE2Pt3Ga4In structures can be described as intergrowth variants of TiNiSi and NdRh2Sn4 related structural slabs. Temperature dependent magnetic susceptibility studies of Gd2Pt3Ga4In and Tb2Pt3Ga4In show Curie-Weiss behavior and the experimental magnetic moments confirm stable trivalent gadolinium respectively terbium. Gd2Pt3Ga4In and Tb2Pt3Ga4In order antiferromagnetically at TN = 15.8(1) and 26.0(1) K. Magnetization curves at 3 K show field-induced spin reorientations.


2007 ◽  
Vol 62 (2) ◽  
pp. 162-168 ◽  
Author(s):  
Selcan Tuncel ◽  
Ute Ch. Rodewald ◽  
Samir F. Matar ◽  
Bernard Chevalier ◽  
Rainer Pöttgena

The magnesium compounds RE4Co2Mg3 (RE = Pr, Gd, Tb, Dy) were prepared by induction melting of the elements in sealed tantalum tubes. The samples were studied by powder X-ray diffraction. The structures of the gadolinium and of the terbium compound were refined from single crystal diffractometer data: Nd4Co2Mg3-type, P2/m, Z = 1, a = 754.0(4), b = 374.1(1), c = 822.5(3) pm, β = 109.65(4)°, wR2 = 0.0649, 730 F2 values for Gd4Co2Mg3 and a = 750.4(2), b = 372.86(6), c = 819.5(2) pm, β = 109.48(3)°, wR2 = 0.0398, 888 F2 values for Tb4Co2Mg3 with 30 variables each. The RE4Co2Mg3 structures are 3 : 1 intergrowth variants of distorted CsCl and AlB2 related slabs of compositions REMg and RECo2. Characteristic structural features (exemplary for Tb4Co2Mg3) are relatively short Tb-Co (271 pm), Co-Co (232 pm) and Mg-Mg (314 pm) distances. The latter are a geometrical constraint of the distortion of the REMg and RECo2 slabs. Chemical bonding analysis (ELF and ECOV data) for Gd4Co2Mg3 reveals strong Gd-Co bonding followed by Mg-Co, while the Mg-Mg interactions can be considered as weak. The Co-Co contacts are only weakly bonding. The bonding and antibonding states are almost filled.


1993 ◽  
Vol 140 (2) ◽  
pp. 341-352 ◽  
Author(s):  
S. Popovic ◽  
B. Gržeta ◽  
H. Löffler ◽  
G. Wendrock

Sign in / Sign up

Export Citation Format

Share Document