The Stability of CeNi3-Based Intermetallic Hydrides

2015 ◽  
Vol 365 ◽  
pp. 24-29
Author(s):  
Stepan Alexandrovich Lushnikov ◽  
Tatyana Victorovna Filippova

Hydrides of CeNi3 intermetallic compounds were synthesized with hydrogen at a pressure of up to 50 bars at room and low temperatures. Using the X-ray diffraction method gives phase composition and lattice parameters of the hydride samples. It was revealed that one set of the hydride samples was stable in air and at room temperature, while another set was very unstable at the same conditions and rapidly desorbed hydrogen. This diverse behaviour depends on the proportion of obtained hydride phases at low and room temperatures, coexisting in the samples. A possible explanation has been proposed based on the different diffusion of hydrogen atoms in ordered and disordered hydride phases, incorporated in the samples.

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1141
Author(s):  
Georgia Basina ◽  
Hafsa Khurshid ◽  
Nikolaos Tzitzios ◽  
George Hadjipanayis ◽  
Vasileios Tzitzios

Fe-based colloids with a core/shell structure consisting of metallic iron and iron oxide were synthesized by a facile hot injection reaction of iron pentacarbonyl in a multi-surfactant mixture. The size of the colloidal particles was affected by the reaction temperature and the results demonstrated that their stability against complete oxidation related to their size. The crystal structure and the morphology were identified by powder X-ray diffraction and transmission electron microscopy, while the magnetic properties were studied at room temperature with a vibrating sample magnetometer. The injection temperature plays a very crucial role and higher temperatures enhance the stability and the resistance against oxidation. For the case of injection at 315 °C, the nanoparticles had around a 10 nm mean diameter and revealed 132 emu/g. Remarkably, a stable dispersion was created due to the colloids’ surface functionalization in a nonpolar solvent.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 753
Author(s):  
Dmitriy Shlimas ◽  
Artem L. Kozlovskiy ◽  
Maxim Zdorovets

The interest in lithium-containing ceramics is due to their huge potential as blanket materials for thermonuclear reactors for the accumulation of tritium. However, an important factor in their use is the preservation of the stability of their strength and structural properties when under the influence of external factors that determine the time frame of their operation. This paper presents the results of a study that investigated the influence of the LiTiO2 phase on the increasing resistance to degradation and corrosion of Li2TiO3 ceramic when exposed to aggressive acidic media. Using the X-ray diffraction method, it was found that an increase in the concentration of LiClO4·3H2O during synthesis leads to the formation of a cubic LiTiO2 phase in the structure as a result of thermal sintering of the samples. During corrosion tests, it was found that the presence of the LiTiO2 phase leads to a decrease in the degradation rate in acidic media by 20–70%, depending on the concentration of the phase. At the same time, and in contrast to the samples of Li2TiO3 ceramics, for which the mechanisms of degradation during a long stay in aggressive media are accompanied by large mass losses, for the samples containing the LiTiO2 phase, the main degradation mechanism is pitting corrosion with the formation of pitting inclusions.


2013 ◽  
Vol 710 ◽  
pp. 170-173
Author(s):  
Lian Ping Chen ◽  
Yuan Hong Gao

It is hardly possible to obtain rare earth doped CaWO4thin films directly through electrochemical techniques. A two-step method has been proposed to synthesize CaWO4:(Eu3+,Tb3+) thin films at room temperature. X-ray diffraction, energy dispersive X-ray analysis, spectrophotometer were used to characterize their phase, composition and luminescent properties. Results reveal that (Eu3+,Tb3+)-doped CaWO4films have a tetragonal phase. When the ratio of n (Eu)/n (Tb) in the solution is up to 3:1, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Tb element; on the contrary, when the ratio in the solution is lower than 1:4, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Eu element. Under the excitation of 242 nm, sharp emission peaks at 612, 543, 489 and 589 nm have been observed for CaWO4:(Eu3+,Tb3+) thin films.


1995 ◽  
Vol 403 ◽  
Author(s):  
D. V. Dimitrov ◽  
A. S. Murthy ◽  
G. C. Hadjipanayis ◽  
C. P. SWANN

AbstractFe-O and Co-O films were prepared by DC magnetron sputtering in a mixture of Ar and O2 gases. By varying the oxygen to argon ratio, oxide films with stoichiometry FeO, Fe3O4, α-Fe2O3, CoO and Co3O4 were produced. TEM studies showed that the Fe – oxide films were polycrystalline consisting of small almost spherical grains, about 10 nm in size. Co-O films had different microstructure with grain size and shape dependent on the amount of oxygen. X-ray diffraction studies showed that the grains in Fe-O films were randomly oriented in contrast to Co-O films in which a <111> texture was observed. Pure FeO and α-Fe2O3 films were found to be superparamagnetic at room temperature but strongly ferromagnetic at low temperatures in contrast to the antiferromagnetic nature of bulk samples. A very large shift in the hysteresis loop, about 3800 Oe, was observed in field cooled Co-CoO films indicating the presence of a large unidirectional exchange anisotropy.


2018 ◽  
Vol 115 (22) ◽  
pp. 5670-5675 ◽  
Author(s):  
Chun-Jern Pan ◽  
Chunze Yuan ◽  
Guanzhou Zhu ◽  
Qian Zhang ◽  
Chen-Jui Huang ◽  
...  

We investigated rechargeable aluminum (Al) batteries composed of an Al negative electrode, a graphite positive electrode, and an ionic liquid (IL) electrolyte at temperatures down to −40 °C. The reversible battery discharge capacity at low temperatures could be superior to that at room temperature. In situ/operando electrochemical and synchrotron X-ray diffraction experiments combined with theoretical modeling revealed stable AlCl4−/graphite intercalation up to stage 3 at low temperatures, whereas intercalation was reversible up to stage 4 at room temperature (RT). The higher-degree anion/graphite intercalation at low temperatures affords rechargeable Al battery with higher discharge voltage (up to 2.5 V, a record for Al battery) and energy density. A remarkable cycle life of >20,000 cycles at a rate of 6C (10 minutes charge time) was achievable for Al battery operating at low temperatures, corresponding to a >50-year battery life if charged/discharged once daily.


2012 ◽  
Vol 730-732 ◽  
pp. 100-104
Author(s):  
Agata Lisińska-Czekaj

In the present study Bi6Fe2Ti3O18 (BFTO) ceramics has been fabricated by solid state reaction from the mixture of simple oxides viz. Bi2O3, TiO2 and Fe2O3. Stoichiometric mixture of the powders was thermally analyzed so parameters of the thermal treatment were determined. The EDS measurements have shown conservation of the chemical composition of the ceramic powder after calcination. Hot-pressing method was used for final densification of ceramic samples. The crystalline structure of the sintered samples was examined by X-ray diffraction method at room temperature. It was found that BFTO ceramics sintered at T=980 °C adopted the orthorhombic structure of Aba2 (41) space group with the following elementary cell parameters: a=5.4567(2)Å, b=49.418(2) and c=5.4826(2). Details concerning the atom’s positions are presented.


2003 ◽  
Vol 805 ◽  
Author(s):  
Günter Krauss ◽  
Sofia Deloudi ◽  
Andrea Steiner ◽  
Walter Steurer ◽  
Amy R. Ross ◽  
...  

ABSTRACTThe stability of single-crystalline icosahedral Cd-Yb was investigated using X-ray diffraction methods in the temperature range 20 K ≤ T ≤ 900 K at ambient pressure and from ambient temperature to 873 K at about 9 GPa. Single-crystals remain stable at low temperatures and in the investigated HP-HT-regime. At high temperatures and ambient pressure, the quasicrystal decomposes. The application of mechanical stress at low temperatures yields to the same decomposition, the formation of Cd. A reaction of icosahedral Cd-Yb with traces of oxygen or water causing the decomposition seems reasonable, but a low-temperature instability of this binary quasi-crystal cannot be ruled out totally.


2016 ◽  
Vol 712 ◽  
pp. 241-245
Author(s):  
Sergey V. Zmanovskiy ◽  
Alexander M. Gromov ◽  
Valentina V. Smirnova ◽  
Vadim F. Petrunin ◽  
Jin Chun Kim

The paper studies the impact of gaseous water on the stability of micron aluminum powders in time at room temperature using the method of gravimetric analysis. The stability was studied using methods of thermal analysis during heating up to 1200 °С in air. The composition of products was analyzed using X-ray diffraction analysis. It was found out that the stability of micron aluminum powders depends on partial pressure of water vapor: the increase of pressure results in decreased stability of powders. The work gives recommendations for storing micron aluminum powders.


2014 ◽  
Vol 778-780 ◽  
pp. 453-456 ◽  
Author(s):  
Masashi Nakabayashi ◽  
Tatsuo Fujimoto ◽  
Hiroshi Tsuge ◽  
Kiyoshi Kojima ◽  
Kozo Abe ◽  
...  

The room temperature residual stress of 4H-SiC wafers has been investigated using a precise X-ray diffraction method. A large strain was observed for the circumferential direction of wafers, more than ten times larger than those measured along the principal plane direction and the radial direction. Optimizing the lateral temperature distribution in growing crystals leads to reduction of residual stress of wafers with high crystal quality.


2017 ◽  
Vol 371 ◽  
pp. 14-17
Author(s):  
Stepan Alexandrovich Lushnikov ◽  
Tatyana Victorovna Filippova

Samples of partly desorbed MgH2 have been studied by the X-ray diffraction method. All samples contained two phases (Mg and MgH2) and were stable at ambient condition for several months. After fast quenching in liquid nitrogen the samples became unstable and transformed after several days into Mg. The rate of decomposition depends on the amount ratio of Mg and MgH2 phases in the sample. Destabilization of the hydride phase observed in quenched samples can be explained on the basis of different diffusion of disordered and ordered hydrogen atoms.


Sign in / Sign up

Export Citation Format

Share Document