Effect of FLiBe Infiltration Pressure on Microstructure of Matrix for TMSR Fuel Elements (FEs)

2017 ◽  
Vol 373 ◽  
pp. 189-192
Author(s):  
Hong Xia Xu ◽  
Jun Lin ◽  
Yu Chen ◽  
Bing Chuan Gu ◽  
Bang Jiao Ye ◽  
...  

The matrix graphite of fuel elements (FEs) with infiltration of 2LiF-BeF2(FLiBe) at different pressures varying from 0.4 MPa to 1.0 MPa, has been studied by X-ray diffraction (XRD), scanning electron microscope (SEM) and positron annihilation lifetime (PAL) measurement. The result of XRD reveals that diffraction patterns of FLiBe appear in matrix graphite infiltrated with FLiBe at a pressure of 0.8 MPa and 1.0 MPa. The surface morphology from SEM shows that FLiBe mainly distributes within macro-pores of matrix graphite. PAL measurement indicates that there are mainly two positron lifetime components in all specimens:τ1~0.21 ns and τ2 ­~0.47 ns, ascribed to annihilation of positrons in bulk and trapped-positrons at surface, respectively. The average positron lifetime decreases with infiltration pressure, due to the decrease in annihilation fraction of positrons with surface after infiltration of FLiBe into macro-pores.

2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744031
Author(s):  
Wenjing Chen ◽  
Hui Chen ◽  
Yongjing Wang ◽  
Congchen Li ◽  
Xiaoli Wang

The Ni–Cr–Fe metal powder was deposited on EA4T steel by laser cladding technology. The microstructure and chemical composition of the cladding layer were analyzed by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The bonding ability between the cladding layer and the matrix was measured. The results showed that the bonding between the cladding layer and the EA4T steel was metallurgical bonding. The microstructure of cladding layer was composed of planar crystals, columnar crystals and dendrite, which consisted of Cr2Ni3, [Formula: see text] phase, M[Formula: see text]C6 and Ni3B phases. When the powder feeding speed reached 4 g/min, the upper bainite occurred in the heat affected zone (HAZ). Moreover, the tensile strength of the joint increased, while the yield strength and the ductility decreased.


2007 ◽  
Vol 336-338 ◽  
pp. 1868-1871 ◽  
Author(s):  
Cheng Fu Yang ◽  
Chien Min Cheng ◽  
Ho Hua Chung ◽  
Chao Chin Chan

5~15 wt% MgO-CaO-Al2O3-SiO2 (MCAS, fabricated by sol-gel method) glass is used as the sintering aid of AlN ceramics. The sintering is proceeded from 1350oC~1550oC, scanning electron microscope is used to observe the sintered morphologies and X-ray diffraction pattern are used to confirm the crystal structures. From the SEM observations, as 10wt% and 15wt% MCAS is added, AlN ceramics can be densified at 1500oC and 1450oC, which are much lower than the before studies were. From the X-ray diffraction patterns, the crystal phases of MCAS-AlN ceramics are AlN, Al2O3, and cordierite phases. In this study, the dielectric characteristics of MCAS-AlN ceramics are also developed as a function of MCAS content and sintering temperature.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1620
Author(s):  
Xiaomin Yuan ◽  
Haonan Zhu ◽  
Huiling Ji ◽  
Yiwei Zhang

Carbon nanotubes (CNTs), dispersed in absolute ethanol, were evenly mixed into Ti/MgH2 powders by wet milling. Then, we applied the vacuum hot-pressed sinteringmethod to the CNTs/TiMg composite materials. An optical microscope (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) and a field emission scanning electron microscope (FESEM) were used for the microstructure observation and phase analysis of samples. The mechanical properties were measured via the micro-vickers hardness. The results show that the main phases in the composites were Ti, Mg and C. Meanwhile, a small amount of Ti-Mg solid solution phase was also found. The cross-section morphology of the composites shows that the melted magnesium fills the grain interface during extrusion and that the composites have a better compactness.The microstructures of the composites have been greatly refined as the CNT contents increased. The structure of the composites was further refined when 0.5 wt.% CNTs were added. The fracture surface is obviously a ductile fracture. The microhardness increases obviously with the CNT content increasing. When the content of the CNTs is 1.0 wt.%, the microhardness of the composites reaches 232 HV, which is 24% higher than that of the matrix.


2011 ◽  
Vol 52-54 ◽  
pp. 842-845 ◽  
Author(s):  
Jian Feng Zhu ◽  
Wen Wen Yang ◽  
Yi Ping Gong

TiAl/Ti2AlC in situ composite was successfully fabricated by hot-press-assisted reaction process from the mixture of Ti, Al and carbon black. The phase formation and transformation were investigated in detail by X-ray diffraction (XRD) and the morphology characteristics were also studied by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results show that when the mixed powders were hot pressed at 1300 °C for 1 h, full dense and highly pure TiAl/Ti2AlC composite was synthesized. The TiAl was the matrix phase and the in situ synthesized Ti2AlC was reinforcing phase. The reaction process was also discussed.


2012 ◽  
Vol 727-728 ◽  
pp. 982-987
Author(s):  
E. de Carvalho ◽  
Marcelo Bertolete ◽  
Izabel Fernanda Machado ◽  
E.N.S. Muccillo

Polycrystalline CaCu3Ti4O12 ceramics were prepared by solid state reactions by spark plasma sintering (SPS) technique. In this study, the effects of the dwell temperature on structural, microstructural and dielectric properties of CaCu3Ti4O12 ceramics have been investigated. Powder mixtures were calcined at 900°C for 18 h before SPS consolidation. The dwell temperatures were 850, 900, 915 and 930°C. Sintered pellets were characterized by X-ray diffraction, scanning electron microscopy and impedance spectroscopy. X-ray diffraction patterns show evidences of a single-phase perovskite-type structure. The calculated lattice parameter is 7.40 Å. The hydrostatic density increases slightly with increasing dwell temperature. Scanning electron microscopy observations revealed a heterogeneous microstructure for all samples. The dielectric loss remains constant over a wide temperature range. The obtained permittivity is approximately 103 at 1 kHz. The increase of the dwell temperature is found to produce a brittle ceramic.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4775 ◽  
Author(s):  
Xiaoyu Wang ◽  
Saixin Wang ◽  
Yuandong Mu ◽  
Ruijie Zhao ◽  
Qingfeng Wang ◽  
...  

Additions of andalusite aggregates (19 wt%) were shown in previous literature to enhance the antioxidation of Al2O3-SiC-C (ASC) castables. This work aims to investigate whether micronized andalusite has a greater influence on antioxidation improvement than andalusite aggregates. Various low contents (5 wt% and below) of micronized andalusite (≤5 μm) were introduced as a substitute for brown fused alumina in the matrix of ASC castables. The antioxidation of castable specimens was estimated by the oxidized area ratio on the fracture surface after a thermal shock test. The microstructure and phases of micronized andalusite and the castable specimens were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The results suggest that the antioxidation effects of ASC castables with a low addition of micronized andalusite are effectively enhanced. The heat-induced transformation of andalusite produces SiO2-rich glass, favoring the sintering of the castable matrix and impeding oxygen diffusion into the castable’s interior. Therefore, the castable antioxidation is enhanced without deteriorating the hot modulus of rupture.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1515
Author(s):  
Halyna Klym ◽  
Ivan Karbovnyk ◽  
Andriy Luchechko ◽  
Yuriy Kostiv ◽  
Viktorija Pankratova ◽  
...  

BaGa2O4 ceramics doped with Eu3+ ions (1, 3 and 4 mol.%) were obtained by solid-phase sintering. The phase composition and microstructural features of ceramics were investigated using X-ray diffraction and scanning electron microscopy in comparison with energy-dispersive methods. Here, it is shown that undoped and Eu3+-doped BaGa2O4 ceramics are characterized by a developed structure of grains, grain boundaries and pores. Additional phases are mainly localized near grain boundaries creating additional defects. The evolution of defect-related extended free volumes in BaGa2O4 ceramics due to the increase in the content of Eu3+ ions was studied using the positron annihilation lifetime spectroscopy technique. It is established that the increase in the number of Eu3+ ions in the basic BaGa2O4 matrix leads to the agglomeration of free-volume defects with their subsequent fragmentation. The presence of Eu3+ ions results in the expansion of nanosized pores and an increase in their number with their future fragmentation.


2014 ◽  
Vol 787 ◽  
pp. 281-287 ◽  
Author(s):  
Zhao Xia Chen ◽  
Wen Yi Peng ◽  
Gui Li Qu ◽  
Wei Wei Wang ◽  
Hai Ping Shi ◽  
...  

This study reports the effect of aging duration on the super-elastic response of Fe-30%Ni-18%Co-10.5%Al-2%Nb-0.15%B (at.%) poly-crystals in compression. The aging temperature was 600°C and the aging durations were 20h, 45h, 60h and 72h, respectively. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) were used in the work. The results show that with prolonging the aging duration, the super-elastic strain rises firstly and then descends. The super-elastic strain reaches the maximum 10.5% when the aging duration is 60h. The crisis stress for stress-induced martensite (σM) has no obvious changes, being about 250MPa when the aging duration is between 20h and 60h. But σM increases markedly when the aging duration prolongs to 72h. The hardness of the specimens changes in the same way as the superelastic strain, and reaches the maximum of 497HV10 when the aging duration is 60h. During the aging process, two factors react. One is the decomposing and reducing in size of the undissolved phase (σ). The other is the formation of the precipitation phase (γ'). Nb can dissolve into the matrix phase (γ) adequately and promote the formation of γ'. The combination of the two factors improves the strength and superelasticity of the specimens till the over-aging arises corresponding to the 72h aging duration.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 6281-6291
Author(s):  
Jafar Ebrahimpour Kasmani ◽  
Ahmad Samariha

The effects of nanoclay were studied relative to the physical, mechanical, optical, and morphological properties of chemimechanical pulping papers. Nanoclay was incorporated at 0%, 2%, 4%, 6%, 8%, or 10%. To increase the retention, 1% cationic starch was used in all test papers. Handsheets (60 g/m2 in weight) were tested to determine their physical, mechanical, optical, and morphological properties. Up to 2% nanoclay increased the tensile strength; at values greater than 2%, the tensile strength decreased. The addition of up to 4% nanoclay increased roughness; between 4% and 10% nanoclay, roughness decreased. With 10% nanoclay, the tear strength, burst strength, and brightness decreased, but the air resistance, opacity, and yellowness increased. Scanning electron microscopy showed that the nanoclay filled the pore spaces between fibers, thus increasing air resistance. X-ray diffraction patterns indicated an intercalated structure.


2008 ◽  
Vol 8 (12) ◽  
pp. 6406-6413 ◽  
Author(s):  
F. Paraguay-Delgado ◽  
R. García-Alamilla ◽  
J. A. Lumbreras ◽  
E. Cizniega ◽  
G. Alonso-Núñez

Two trimetallic sulfurs, MoWNiS and MoWSNi, were synthesized to be used as a catalyst in hydrodesulfurization reactions. The mixed oxide mesoporous nanostructured MoO3-WO3 with an Mo:W atomic ratio of 1:1 was used as the precursor. The first catalyst was prepared by impregnating nickel in the oxide precursor and then subsequent sulfiding with an H2S/H2 mix at 400 °C for 2 hours. The second catalyst was prepared by sulfiding the precursor and then impregnating the nickel, and finally reducing the material with a H2/N2 at 350 °C. In both catalysts the Mo:W:Ni atomic ratio was maintained at 1:1:0.5. The materials obtained were characterized by physical adsorption of nitrogen, X-ray diffraction, scanning electron microscopy, transmission electron microscopy. Furthermore, the materials obtained were evaluated by a dibenzothiophene hydrodesulfuration reaction. The diffraction patterns show that both materials are polycrystalline and mainly of MoS2 and WS2 phases.


Sign in / Sign up

Export Citation Format

Share Document